7 References
Abesser, C., F. Ciocca, J. Findlay, D. Hannah, P. Blaen, A. Chalari, M. Mondanos, and S. Krause, 2020, A distributed heat pulse sensor network for thermo-hydraulic monitoring of the soil subsurface. Quarterly Journal of Engineering and Hydrogeology, volume 53, issue 3, page 352-365, http://doi.org/10.1144/qjegh2018-147.
Avery, E., R. Bibby, A. Visser, B. Esser, and J. Moran, 2018, Quantification of groundwater discharge in a subalpine stream using Radon-222. Water, volume 10, issue 2, page 100, https://doi.org/10.3390/w10020100.
Aguilar-López, J.P., T.A. Bogaard, A.G. Ruiz, M.G. Herràez, and G.G. Drijkoningen, 2019, Fiber optic distributed acoustic sensing for levee monitoring. European Geosciences Union General Assembly, Vienna, Austria, http://resolver.tudelft.nl/uuid:c3816121-4354-4046-a15b-37cab3d3363f, Accessed on May 27, 2022.
Bakker, M., R. Caljé, F. Schaars, K.J. van der Made, and S. Haas, 2015, An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment. Water Resources Research, volume 51, issue 4, pages 2760-2772, https://doi.org/10.1002/2014WR016632.
Bakx, W., P.J Doornenbal, R.J. van Weesep, V.F. Bense, G.H.P.O. Essink, and M.F.P. Bierkens, 2019, Determining the relation between groundwater flow velocities and measured temperature differences using active heating-distributed temperature sensing. Water, volume 11, issue 8, page 1619, https://doi.org/10.3390/w11081619.
Banks, E., M. Shannafield, and P. Cook, 2014, Induced temperature gradients to examine groundwater flowpaths in open boreholes. Groundwater, volume 52, issue 6, pages 943-951, https://doi.org/10.1111/gwat.12157.
Becker, M.W., C. Ciervo, M. Cole, T. Coleman, and M. Mondanos, 2017, Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milli-Hertz frequencies. Geophysical Research Letters, volume 44, issue 14, pages 7295-7302, https://doi.org/10.1002/2017GL073931.
Bencala, K.E., 2000, Hyporheic zone hydrological processes. Hydrological Processes, volume 14, issue 15, pages 2797-2798, https://doi.org/10.1002/1099-1085(20001030)14:15<2797::AID-HYP402>3.0.CO;2-6.
Benítez-Buelga, J., C. Sayde, L. Rodríguez-Sinobas, and J.S. Selker, 2014, Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach. Vadose Zone Journal, volume 13, issue 11, pages 1-10, https://doi.org/10.2136/vzj2014.02.0014.
Bense, V.F., T. Read, O. Bour, T. Le Borgne, T. Coleman, S. Krause, A. Chalari, M. Mondanos, F. Ciocca, and J.S. Selker, 2016, Distributed temperature sensing as a downhole tool in hydrogeology. Water Resources Research, volume 52, issue 12, pages 9259-9273, https://doi.org/10.1002/2016WR018869.
Briggs, M.A., L.K. Lautz, and J.M. McKenzie, 2012, A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrologic Processes, volume 26, issue 9, pages 1277-1290, https://doi.org/10.1002/hyp.8200.
Blume, T., S. Krause, K. Meinikmann, and J. Lewandowski, 2013, Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing. Water Resources Research, volume 49, issue 12, pages 7929-7944, https://doi.org/10.1002/2012WR013215.
Bersan, S., A.R. Koelewijn, and P. Simonini, 2017, Effectiveness of distributed temperature measurements for early detection of piping in river embankments. Hydrology Earth System Sciences, volume 22, pages 1491-1508, https://doi.org/10.5194/hess-22-1491-2018.
Ciocca, F., I. Lunati, N. Van de Giesen, and M.B. Parlange, 2012, Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment. Vadose Zone Journal, volume 11, issue 4, https://doi.org/10.2136/vzj2011.0199.
Coleman, T.I., B.L. Parker, C.H. Maldaner, and M.J. Mondanos, 2015, Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes. Journal of Hydrology, volume 528, pages 449-462, https://doi.org/10.1016/j.jhydrol.2015.06.061.
Constantz, J., 1998, Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resources Research, volume 34, issue 7, pages 1609-1615, https://doi.org/10.1029/98WR00998.
Daley, T.M., D.E. Miller, K. Dodds, P. Cook, and B.M. Freifeld, 2015, Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophysical Prospecting, volume 64, issue 5, pages 1318-1334, https://doi.org/10.1111/1365-2478.12324.
des Tombe, B.F., M. Bakker, F. Smits, F. Schaars, and K.-J. van der Made, 2019, Estimation of the variation in specific discharge over large depth using distributed temperature sensing (DTS) measurements of the heat pulse response. Water Resources Research, volume 55, issue 1, pages 811-826, https://doi.org/10.1029/2018WR024171.
des Tombe, B.F. and B. Schilperoort, 2020a, DTS calibration Python package for calibrating distributed temperature sensing measurements. https://zenodo.org/record/3876407 – .YRCkoNNKi3I, Accessed on May 27, 2022.
des Tombe, B., B. Schilperoort, and M. Bakker, 2020b, Estimation of temperature and associated uncertainty from fiber-optic Raman-spectrum distributed temperature sensing. Sensors, volume 20, issue 8, page 2235, https://doi.org/10.3390/s20082235.
Dong, J., S.C. Steele-Dunne, T.E. Ochsner, C.E. Hatch, C. Sayde, J. Selker, S. Tyler, M.H. Cosh, and N. Van de Giesen, 2016, Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother. Water Resources Research, volume 52, issue 10, pages 7690-7710, https://doi.org/10.1002/2016WR019031.
Dong, J., R. Agliata, S. Steele-Dunne, O. Hoes, T. Bogaard, R. Greco, and N. Van de Giesen, 2017, The impacts of heating strategy on soil moisture estimation using actively heated fiber optics. Sensors, volume 17, issue 9, page 2102, https://doi.org/10.3390/s17092102.
Farahanii, M. and T. Gogolla, 1999, Spontaneous Raman scattering in optical fibers with modulate probe light for distributed temperature Raman remote. Journal of Lightwave Technology, volume 17, issue 8, pages 1379-1391, doi: 10.1109/50.779159.
Freifeld, B.M., S. Finsterle, T.C. Onstott, P. Toole, and L.M. Pratt, 2008, Ground surface temperature reconstructions: using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor. Geophysical Research Letters, volume 35, issue 14, https://doi.org/10.1029/2008GL034762.
Ghafoori, Y., A. Vidmar, J. Říha, and A. Kryžanowski, 2020, A review of measurement calibration and interpretation for seepage monitoring by optical fiber distributed temperature. Sensors, volume 20, issue 19, page 5696, https://doi.org/10.3390/s20195696.
Gregory, C.T., 2009, Temperature and infiltration characterization of a constructed wetland for wastewater treatment. Master of Science Thesis, Department of Biological and Ecological Engineering, Oregon State University, 97 pages, http://hdl.handle.net/1957/13780, Accessed on 27 May, 2022.
Hausner, M.B., S. Suárez, K.E. Glander, N. Van de Giesen, J.S. Selker, and S. Tyler, 2011, Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data. Sensors, volume 11, issue 11, pages 10859-10879, https://doi.org/10.3390/s111110859.
Hausner, M.B., L. Kryder, J. Klenke, R. Reinke, and S.W. Tyler, 2016, Interpreting variations in groundwater flows from repeated distributed thermal perturbation tests. Groundwater, volume 54, issue 4, pages 559-568, https://doi.org/10.1111/gwat.12393.
Hawkins, A.J., D.B. Fox, M.W. Becker, and J.W. Tester, 2017, Measurement and simulation of heat exchange in fractured bedrock using inert and thermally degrading tracers. Water Resources Research, volume 53, issue 2, pages 1210-1230, https://doi.org/10.1002/2016WR019617.
He, H., M.F. Dyck, R. Horton, T. Ren, K.L. Bristow, J. Lv, and B. Si, 2018, Development and application of the heat pulse method for soil physical measurements. Reviews of Geophysics, volume 56, issue 4, pages 567-620, https://doi.org/10.1029/2017RG000584.
Henderson, R.D., F.D. Day-Lewis, and C.F. Harvey, 2009, Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data. Geophysical Research Letters, volume 36, issue 6, https://doi.org/10.1029/2008GL036926.
Higuchi, K., K. Fujisawa, K. Asai, A. Pasuto, and G. Marcato, 2007, Application of new landslide monitoring technique using optical fiber sensor at Takisaka Landslide, Japan. Proceedings of the First North American Landslide Conference, Vail, Colorado, USA, pages 1074-1083, https://www.pwri.go.jp/team/landslide/outcome/102.pdf, Accessed on 27 May, 2022.
Hill, K.O. and G. Meltz, 1997, Fiber Bragg grating technology: fundamentals and overview. Journal of Lightwave Technology, volume 15, issue 8, pages 1263-1276, https://doi.org/10.1109/50.618320.
Johansson, S., 1997, Seepage monitoring in embankment dams. Doctor of Philosophy thesis, Superseded Departments, Civil and Environmental Engineering, Royal Institute of Technology, Stockholm, Sweden, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2477, Accessed on May 27, 2022.
Johansson, S. and P. Sjödahl, 2004, Downstream seepage detection using temperature measurements and visual inspection—Monitoring experiences from Røsvatn field test dam. Seminar on Stability and Breaching of Embankment Dams, Oslo, Norway, 21–22 October 2004, 20 pages, https://www.sensornet.co.uk/wp-content/uploads/2016/05/Oslo_2004-_Downstream_Seepage_Detection_using_Temperature_Me.pdf, Accessed on May 27, 2022.
Johansson, S. and P. Sjodahl, 2007, Seepage measurements and internal erosion detection using the passive temperature method in Assessment of the Risk of Internal Erosion of Water Retaining Structures: Dams, Dykes and Levees, Technische Universität München, Munich, Germany, pages 186-192, ISBN 978-3-940476-04-3.
Klepikova, M., C. Roques, S. Loew, and J.S. Selker, 2018, Improved characterization of groundwater flow in heterogeneous aquifers using granular polyacrylamide (PAM) gel as temporary grout. Water Resources Research, volume 54, issue 2, pages 1410-1419, https://doi.org/10.1002/2017WR022259.
Kishida, K., Y. Yamauchi, and A. Guzik, 2014, Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system. Photonic Sensors, volume 4, issue 1, pages 1-11, https://doi.org/10.1007/s13320-013-0136-1.
Kwon, I.B., C.Y. Kim, D.C. Seo, and H.C. Hwang, 2006, Multiplexed fiber optic OTDR sensors for monitoring of soil sliding. Proceedings of the XVIII IMEKO World Congress, Rio de Janeiro, Brazil, 17-22 September 2006, https://www.imeko.org/publications/wc-2006/PWC-2006-TC20-002u.pdf, Accessed on May 27, 2022.
Leaf, A.T., D.J. Hart, and J.M. Bahr, 2012, Active thermal tracer tests for improved hydrostratigraphic characterization. Groundwater, volume 50, issue 5, pages 726-735, https://doi.org/10.1111/j.1745-6584.2012.00913.x.
Li, Y., M. Karrenbach, and J. Ajo-Franklin, editors, 2021, Distributed acoustic sensing in geophysics: methods and applications. American Geophysical Union Monograph, ISBN: 978-1-119-52177-8, 320 pages.
Lindsey, N.J., E.R. Martin, D.S. Dreger, B. Freifeld, S. Cole, S.R. James, and J.B. Ajo-Franklin, 2017, Fiber-optic network observations of earthquake wavefields. Geophysical Research Letters, volume 44, issue 23, pages 11,792-11,799, https://doi.org/10.1002/2017GL075722.
Lindsey, N.J., T.C. Dawe, and J.B. Ajo-Franklin, 2019, Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, volume 366, issue 6469, pages 1103-1107, https://doi.org/10.1126/science.aay5881.
Maldaner, C.H., J.D. Munn, T.I. Coleman, J.W. Molson, and B.L. Parker, 2019, Groundwater flow quantification in fractured rock boreholes using active distributed temperature sensing under natural gradient conditions. Water Resources Research, volume 55, issue 4, pages 3285-3306, https://doi.org/10.1029/2018WR024319.
McDaniel, A., D. Fratta, J.M. Tinjumc, and D. Hart, 2017, Long-term district-scale geothermal exchange borefield monitoring with fiber optic distributed temperature sensing. Geothermics, volume 72, pages 193-204, https://doi.org/10.1016/j.geothermics.2017.11.008 .
Medina, R., C. Pham, M. Plumlee, A. Hutchinson, M. Becker, and P. Connell, 2020, Distributed temperature sensing to measure infiltration rates across a groundwater recharge basin. Groundwater, volume 58, issue 6, pages 913-923, https://doi.org/10.1111/gwat.13007.
Nyquist, H., 1928, Certain topics in telegraph transmission theory. Winter Convention of the American Institute of Electrical Engineers, New York, February 13-17, pages 617-644, https://www.eit.lth.se/fileadmin/eit/courses/eit085f/Nyquist_Certain_Topics_in_Telegraph_Transmission_Theory__AIEE_1928.pdf, Accessed on May 27, 2022.
Overeem, A., H. Leijnse, and R. Uijlenhoet, 2011, Measuring urban rainfall using microwave links from commercial cellular communication networks. Water Resources Research, volume 47, issue 12, https://doi.org/10.1029/2010WR010350.
Overeem, A., H. Leijnse, and R. Uijlenhoet, 2013, Country-wide rainfall maps from cellular communication networks. Proceedings of the National Academy of Sciences of United States of America, volume 110, issue 8, 2741-2745, https://doi.org/10.1073/pnas.1217961110.
Perzlmaier, S., M. Aufleger, and M. Conrad, 2004, Distributed fiber optic temperature measurements in hydraulic engineering: Prospects of the heat-up method. Proceedings of a Workshop on Dam Safety Problems and Solutions, 72nd Annual Meeting, Workshop on Dam Safety Problems and Solutions-Sharing Experience, Seoul, South Korea, page 31.
Perzlmaier, S., M. Aufleger, and J. Dornstädter, 2007, Detection of internal erosion by means of the active temperature method in Assessment of the Risk of Internal Erosion of Water Retaining Structures: Dams, Dykes and Levees, Technische Universität München, Munich, Germany, ISBN 978-3-940476-04-3.
Read, T., O. Bour, J.S. Selker, V.F. Bense, T.L. Borgne, R. Hochreutener, and N. Lavenant, 2014, Active-distributed temperature sensing to continuously quantify vertical flow in boreholes. Water Resources Research, volume 50, issue 5, pages 3706-3713, https://doi.org/10.1002/2014WR015273.
Read, T., V.F. Bense, R. Hochreutener, O. Bour, T. Le Borgne, N. Lavenant, and J.S. Selker, 2015, Thermal-plume fibre optic tracking (T-POT) test for flow velocity measurement in groundwater boreholes. Geoscientific Instrumentation, Methods and Data Systems, volume 4, issue 2, pages 197-202, https://doi.org/10.5194/gi-4-197-2015.
Rose, L., S. Krause, and N.J. Cassidy, 2013, Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing. Water Resources Research, volume 49, issue 3, pages 1741-1745, https://doi.org/10.1002/wrcr.20144.
Sayde, C., J.B. Buelga, L. Rodriguez-Sinobas, L.E. Khoury, M. English, N. Van de Giesen, and J.S. Selker, 2014, Mapping variability of soil water content and flux across 1-1000 m scales using the Actively Heated Fiber Optic method. Water Resources Research, volume 50, issue 9, pages 7302-7317, https://doi.org/10.1002/2013WR014983.
Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. Van de Giesen, M. English, R. Cuenca, and J.S. Selker, 2010, Feasibility of soil moisture monitoring with heated fiber optics. Water Resources Research, volume 46, issue 6, https://doi.org/10.1029/2009WR007846.
Schenato, L., 2017, A review of distributed fibre optic sensors for geo-hydrological applications. Applied Sciences, volume 7, issue 9, page 896, https://doi.org/10.3390/app7090896.
Selker, J., N. Van de Giesen, M. Westhoff, W. Luxemburg, and M.B. Parlange, 2006a, Fiber optics opens window on stream dynamics. Geophysical Research Letters, volume 33, issue 24, https://doi.org/10.1029/2006GL027979.
Selker, J.S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. Van de Geisen, M. Stejskal, J. Zeman, M. Westoff, and M.B. Parlange, 2006b, Distributed fiber-optic temperature sensing for hydrologic systems. Water Resources Research, volume 42, issue 12, https://doi.org/10.1029/2006WR005326.
Selker, J.S., S. Tyler, and N. Van de Giesen, 2014, Comment on “Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing” by L. Rose, S. Krause, and N.J. Cassidy. Water Resources Research, volume 50, issue 6, pages 5372-5374, https://doi.org/10.1002/2013WR014979.
Selker, F. and J.S. Selker, 2018, Investigating water movement within and near wells using active point heating and fiber optic distributed temperature sensing. Sensors, volume 18, issue 4, page 1023, https://doi.org/10.3390/s18041023.
Shanafield, M., E.W. Banks, J.W. Arkwright, and M.B. Hausner, 2018, Fiber-optic sensing for environmental applications: Where we have come from and what is possible. Water Resources Research, volume 54, issue 11, page 8552-8557, https://doi.org/10.1029/2018WR022768.
Simon, N., O. Bour, N. Lavenant, G. Porel, B. Nauleau, B. Pouladi, and L. Longuevergne, 2020, A comparison of different methods to estimate the effective spatial resolution of FO-DTS measurements achieved during sandbox experiments. Sensors, volume 20, issue 2, https://doi.org/10.3390/s20020570.
Sourbeer, J. and S. Loheide, 2015, Obstacles to long-term soil moisture monitoring with heated distributed temperature sensing. Hydrological Processes, volume 30, issue 7, pages 1017-1035, https://doi.org/10.1002/hyp.10615.
Steele-Dunne, S.C., M.M. Rutten, D.M. Krzeminska, M. Hausner, S.W. Tyler, J. Selker, T.A. Bogaard, and N.C. Van de Giesen, 2010, Feasibility of soil moisture estimation using passive distributed temperature sensing. Water Resources Research, volume 46, issue 3, https://doi.org/10.1029/2009WR008272.
Tribaldos, V.R. and J.B. Ajo-Franklin, 2021, Aquifer monitoring using ambient seismic noise recorded with distributed acoustic sensing (DAS) deployed on dark fiber. Journal of Geophysical Research: Solid Earth, volume 126, issue 4, https://doi.org/10.1029/2020JB021004.
Tyler, S.W., S. Burak, J. McNamara, A. Lamontagne, J. Selker, and J. Dozier, 2008, Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors. Journal of Glaciology, volume 54, issue 187, pages 673-679, https://doi.org/10.3189/002214308786570827.
Tyler, S.W., J.S. Selker, M.B. Hausner, C.E. Hatch, T. Torgersen, C.E. Thodal, and S.G. Schladow, 2009, Environmental temperature sensing using Raman spectra DTS fiber optic methods. Water Resources Research, volume 45, issue 4, https://doi.org/10.1029/2008WR007052.
Uijlenhoet, R., A. Overeem, and H. Leijnse, 2018, Opportunistic remote sensing of rainfall using microwave links from cellular communication networks. Wiley Interdisciplinary Reviews, volume 5, issue 4, https://doi.org/10.1002/wat2.1289.
Van de Giesen, N., S.C. Steele-Dunne, J. Jansen, O. Hoes, M.B. Hausner, S. Tyler, and J. Selker, 2012, Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data. Sensors, volume 12, issue 5, pages 5471-5485, https://doi.org/10.3390/s120505471.
Weiss, J.D., 2012, Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier. Journal of the Air and Waste Management Association, volume 53, issue 9, pages 1130-1148, https://doi.org/10.1080/10473289.2003.10466268 .
Westhoff, M.C., H.H.G. Savenije, W.M.J. Luxemburg, G.S. Stelling, N.C. Van de Giesen, J.S. Selker, L. Pfister, and. S. Uhlenbrook, 2007, A distributed stream temperature model using high resolution temperature observations. Hydrology and Earth System Sciences, volume 11, pages 1469-1480, https://doi.org/10.5194/hess-11-1469-2007.
Wu, R., V. Martin, J. McKenzie, S. Broda, B. Bussière, M. Aubertin, and B.L. Kurylyk, 2019, Laboratory-scale assessment of a capillary barrier using fibre optic distributed temperature sensing (FO-DTS). Canadian Geotechnical Journal, volume 57, issue 1, pages 115-126, https://doi.org/10.1139/cgj-2018-0283.
Zhang, C.-C., B. Shi, H.-H. Zhu, B.-J. Wang, and G.-Q. Wei, 2020, Toward distributed fiber-optic sensing of subsurface deformation: A theoretical quantification of ground-borehole-cable interaction. Journal of Geophysical Research: Solid Earth, volume 125, issue 3, https://doi.org/10.1029/2019JB018878.