References
Ackley, C., Tank, S. E., Haynes, K. M., Rezanezhad, F., McCarter, C., & Quinton, W. L. 2021. Coupled hydrological and geochemical impacts of wildfire in peatlanddominated regions of discontinuous permafrost. Science of the Total Environment, 782, doi:10.1016/j.scitotenv.2021.146841 .
Ahad, J. M., Macdonald, R. W., Parrott, J. L., Yang, Z., Zhang, Y., Siddique, T., Kuznetsova, A., Rauert, C., Galarneau, E., Studabaker W. B., & Evans, M. 2020. Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation. Environmental Pollution, 266, doi:10.1016/j.envpol.2020.114988 .
Anderson, J. A. R. 1983. The tropical peat swamps of western Malesia, in Ecosystems of the World: Mires: Swamp, Bog, Fen and Moor, 4B, Regional Studies, editor, A.J.P. Gore, Elsevier, New York, United States, 181–199.
Baird, A. J. & Gaffney, S. W. 2000. Solute movement in drained fen peat: A field tracer study in a Somerset (UK) wetland. Hydrological Processes, 14(14), 2489–2503, doi:10.1002/1099–1085(20001015)14:14<2489::AID–HYP110>3.0.CO;2–Q .
Baird, A. J., Milner, A. M., Blundell, A., Swindles, G. T., & Morris, P. J. 2016. Microformscale variations in peatland permeability and their ecohydrological implications. Journal of Ecology, 104(2), 531–544, doi:10.1111/1365–2745.12530 .
Baird, A. J., Low, R., Young, D., Swindles, G. T., Lopez, O. R., & Page, S. 2017. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophysical Research Letters, 44, 1333–1339, doi:10.1002/2016GL072245 .
Balliston, N. E., McCarter, C. P. R., & Price, J. S. 2018. Microtopographical and hydrophysical controls on subsurface flow and solute transport: A continuous solute release experiment in a subarctic bog. Hydrological Processes, 32, 2963–2975, doi:10.1002/hyp.13236 .
Balliston, N. E. & Price, J. S. 2020. Heterogeneity of the peat profile and its role in unsaturated sodium chloride rise at field and laboratory scales. Vadose Zone Journal, 19, doi:10.1002/vzj2.20015 .
Bauer, M., Heitmann, T., Macalady, D. L., & Blodau, C. 2007. Electron transfer capacities and reaction kinetics of peat dissolved organic matter. Environmental Science & Technology, 41(1), pages 139-145, doi:10.1021/es061323j .
Beckers, F. & Rinklebe, J. 2017. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 1–102, doi:10.1080/10643389.2017.1326277 .
Beckwith, C. W. & Baird, A. J. 2001. Effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat. Water Resources Research, 37, 551–558, doi:10.1029/2000WR900303 .
Belyea, L. R. & Baird, A. J. 2006. Beyond “the limits to peat bog growth”: Cross-scale feedback in peatland development. Ecological Monographs, 76(3), 299–322. doi.org/10.1890/0012–9615(2006)076[0299:BTLTPB]2.0.CO;2 .
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., & Zhuj, W. 2020. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of The Total Environment, 721, doi:10.1016/j.scitotenv.2020.137647 .
Branfireun, B. A., Cosio, C., Poulain, A. J., Riise, G., & Bravo, A. G. 2020. Mercury cycling in freshwater systems – An updated conceptual model. Science of The Total Environment, 745, doi:10.1016/j.scitotenv.2020.140906 .
Brinson, M. M. 1993. A hydrogeomorphic classification for wetlands. Wetlands Research Program Technical Report, U.S. Army Corps of Engineers, Washington, DC, USA, page 79, WRP–DE–4 .
Carpino, O., Haynes, K., Connon, R., Craig, J., Devoie, E., & Quinton, W. 2021. Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes. Hydrology and Earth System Science, 25(6), 3301–3317, doi:10.5194/hess–25 3301–2021 .
Chapin, C. T., Bridgham, S. D., Pastor, J., & Updegraff, K. 2003. Nitrogen, phosphorus, and carbon mineralization in response to nutrient and lime additions in peatlands. Soil Science, 168(6), 409–420, doi:10.1097/01.ss.0000075286.87447.5d .
Chason, D.B. & Siegel, D. I. 1986. Hydraulic conductivity and related physical properties of peat, Lost River Peatland, northern Minnesota. Soil Science, 142(2), 91–99, doi:10.1097/00010694–198608000–00005 .
Chico, G., Clutterbuck, B., Clough, J., Lindsay, R., Midgley, N. G., & Labadz, J. C. 2020. Geo-hydromorphological assessment of Europe’s southernmost blanket bogs. Earth Surface Processes and Landforms, 45(12), 2747–2760, doi:10.1002/esp.4927 .
Clymo, R. S. 1963. Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany, 27(106), 309–324, doi:10.1093/OXFORDJOURNALS.AOB.A083847 .
Clymo, R. S. 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society of London. Biological Sciences, 303(1117), 605–654, https://royalsocietypublishing.org/doi/10.1098/rstb.1984.0002 .
Clymo, R. S. 1987. The ecology of peatlands. Science Progress, 71, 593–614, http://research.sbcs.qmul.ac.uk/r.clymo/Clymo–article–PDFs/32–Clymo–1987 Peatland–ecology.pdf .
Cobb, A. R., Hoyt, A. M., Gandois, L., Eri, J., Dommain, R., Abu Salim, K., Kai, Su’ut, F. M., N. S. H., & Harvey, C. F. 2017. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proceedings of the National Academy of Sciences, 114(26), doi:10.1073/pnas.1701090114 .
Connon, R., Quinton, W., Craig, J., Hanisch, J., & Sonnentag, O. 2015. The hydrology of interconnected bog complexes in discontinuous permafrost terrains. Hydrological Processes, volume 29(18), 3831–3847, doi:10.1002/hyp.10604 .
Connon, R. F., Devoie, É., Quinton, W. L., Veness, T., & Hayashi M. 2018. The influence of shallow taliks on permafrost thaw and active layer dynamics in subarctic Canada. Journal of Geophysical Research, 123(2), 281–297, doi:10.1002/2017JF004469 .
Damman, A. W. H. 1979. Geographic patterns in peatland development in eastern North America, Classification of mires and peats. Proceedings of the International Symposium on Peat and Peatlands, Hyytlala, Finland, 213–228.
Dettmann, U. & Bechtold, M. 2016. One-dimensional expression to calculate specific yield for shallow groundwater systems with microrelief. Hydrological Processes, 30(2), 334– 340, doi:10.1002/hyp.10637 .
Devoie, É. G., Craig, J. R., Connon, R. F., & Quinton, W. L. 2019. Taliks: A tipping point in discontinuous permafrost degradation in peatlands. Water Resources Research, volume 55(11), 9838–9857, doi:10.1029/2018WR024488 .
Dohong, A., Aziz, A. A., & Dargusch, P. 2017. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy, 69, 349–360.
Dohong, A., Aziz, A. A., & Dargusch, P. 2018. A review of techniques for effective tropical peatland restoration. Wetlands, 38(2), 275–292.
Dommain, R., Cobb, A. R., Joosten, H., Glaser, P. H., Chua, A. F., Gandois, L., Kai, L., Ming, F-M., Salim, A., Su’ut, K. A., Harvey, N. S. H. & Harvey, C. F. 2015. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). Journal of Geophysical Research: Biogeosciences, 120(4), 617– 640, doi:10.1002/2014JG002796 .
Elbein, P. 2019. Tree Planting Programs Can Do More Harm Than Good. National Geographic, April 26, 2019, https://pulitzercenter.org/reporting/tree–planting programs–can–do–more–harm–good .
Elliott, J., & Price, J. 2020. Comparison of soil hydraulic properties estimated from steadystate experiments and transient field observations through simulating soil moisture in regenerated Sphagnum moss. Journal of Hydrology, 582, doi:10.1016/j.jhydrol.2019.124489 .
Elmes, M. C., Thompson, D. K., & Price, J. S. 2019. Changes to the hydrophysical properties of upland and riparian soils in a burned fen watershed in the Athabasca Oil Sands Region, northern Alberta, Canada. CATENA, volume 181, doi:10.1016/j.catena.2019.104077 .
Elmes, M. C., Wells, C. M., Sutherland, G. S., Kessel, E. D., Price, J. S., & Petrone, R. M. 2021. Evaluating the hydrological response of a boreal fen following the removal of a temporary access road. Journal of Hydrology, 594, doi:10.1016/j.jhydrol.2020.125928 .
Fritz, C., Campbell, D. I., & Schipper, L. A. 2008. Oscillating peat surface levels in a restiad peatland, New Zealand – Magnitude and spatiotemporal variability. Hydrological Processes: An International Journal, 22(17), 3264–3274, doi:10.1002/hyp.6912 .
Freeze, R. A., & Cherry, J. A. 1979. Groundwater. Prentice-Hall Inc., Englewood Cliffs, 604 pages, https://gw–project.org/books/groundwater/ .
Foster, D. R., Wright Jr., H. E., Thelaus, M., & King, G. A. 1988. Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada. The Journal of Ecology, 76, 1164–1185, doi:10.2307/2260641 .
Gauthier, T. L. J., McCarter, C. P. R., & Price, J. S. 2018. The effect of compression on Sphagnum hydrophysical properties: Implications for increasing hydrological connectivity in restored cutover peatlands. Ecohydrology, 11(8), doi:10.1002/eco.2020 .
Gharedaghloo, B., & Price, J. S. 2017. Fate and transport of free-phase and dissolved-phase hydrocarbons in peat and peatlands: Developing a conceptual model. Environmental Reviews, 26(1), 55–68, doi:10.1139/er–2017–0002 .
Gharedaghloo, B. & Price, J. S. 2019. Characterizing the immiscible transport properties of diesel and water in peat soil. Journal of Contaminant Hydrology, 221, 11–25, doi:10.1016/j.jconhyd.2018.12.005 .
Gharedaghloo, B. & Price, J. S. 2021. Assessing benzene and toluene adsorption with peat depth: Implications on their fate and transport. Environmental Pollution, 274, doi:10.1016/j.envpol.2021.116477 .
Gharedaghloo, B., Price, J., Rezanezhad, F., & Quinton, W. L. 2018. Evaluating the hydraulic and transport properties of peat soil using pore network modeling and Xray micro computed tomography. Journal of Hydrology, 561, 494–508, doi:10.1016/j.jhydrol.2018.04.007 .
Glaser, P. H., Hansen, B. C., Siegel, D. I., Reeve, A. S., & Morin, P. J. 2004. Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada. Journal of Ecology, 92(6), 1036–1053, doi:10.1111/j.0022 0477.2004.00931.x .
Glaser, P. H., Siegel, D. I., Reeve, A. S., & Chanton, J. P. 2006. Hydrogeology of major peat basins in North America. Developments in Earth Surface Processes, 9, 347–376, doi:10.1016/S0928–2025(06)09015–8 .
Glaser, P. H., Rhoades, J., & Reeve, A. S. 2021. The hydraulic conductivity of peat with respect to scaling, botanical composition, and greenhouse gas transport: Mini-aquifer tests from the Red Lake Peatland, Minnesota. Journal of Hydrology, 596, doi:10.1016/j.jhydrol.2020.125686 .
Golubev, V., McCarter, C. P. R., & Whittington, P. 2021. Ecohydrological implications of the variability of soil hydrophysical properties between two Sphagnum moss microforms and the impact of different sample heights. Journal of Hydrology, 603, doi:10.1016/j.jhydrol.2021.126956 .
Grundling, P. L., Clulow, A. D., Price, J. S., & Everson, C. S. 2015. Quantifying the water balance of Mfabeni Mire (iSimangaliso Wetland Park, South Africa) to understand its importance, functioning and vulnerability. Mires and Peat, 16(12), 1–18, mires–and http://mires–and–peat.net/media/map16/map_16_12.pdf .
Gupta, P. K., Gharedaghloo, B., Lynch, M., Cheng, J., Strack, M., Charles, T. C., & Price, J. S. 2020. Dynamics of microbial populations and diversity in NAPL contaminated peat soil under varying water table conditions. Environmental Research, 191, doi:10.1016/j.envres.2020.110167 .
Harms, W. R., Schreuder, H. T., Hook, D. D., & Brown, C. L. 1980. The effects of flooding on the swamp forest in Lake Ocklawaha, Florida. Ecology, 61(6), 1412–1421, doi:10.2307/1939050 .
Hayashi, M., van der Kamp, G., & Rudolph, D. L. 1998. Water and solute transfer between a prairie wetland and adjacent uplands, 1. Water balance. Journal of Hydrology, 207(1– 2), 42–55, doi:10.1016/S0022–1694(98)00098–5 .
Hayashi, M., Goeller, N., Quinton, W. L., & Wright, N. 2007. A simple heat-conduction method for simulating the frost table depth in hydrological models. Hydrological Processes, 21(19), 2610–2622, doi:10.1002/hyp.6792 .
Haynes, K. M., Connon, R. F., & Quinton, W. L. 2018. Permafrost thaw induced drying of wetlands at Scotty Creek, NWT, Canada. Environmental Research Letters, 13(11), doi:10.1088/1748–9326/aae46c .
Haynes, K., Smart, J., Carpino, O., Disher, B., & Quinton, W. 2020. The role of hummocks in re-establishing black spruce forest following permafrost thaw. Ecohydrology, 14(3), doi:10.1002/eco.2273 .
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B., Aurela, M., Barr, A. G., Black, T. A., Carey, S. K., Chen, J. & Chi, J. 2020. The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters, 15(10), doi:10.1088/1748–9326/abab34 .
Hoag, R. S. & Price, J. S. 1995. A field-scale, natural gradient solute transport experiment in peat at a Newfoundland blanket bog. Journal of Hydrology, 172, 171–184, doi:10.1016/0022–1694(95)02696–M .
Hoag, R. S. & Price, J. S. 1997. The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns. Journal of Contaminant Hydrology, volume 28, issue 3, pages 193-205, doi:10.1016/S0169–7722(96)00085–X .
Holden, J. 2006. Peatland hydrology. Developments in Earth Surface Processes, 9, 319–346, doi:10.1016/S0928–2025(06)09014–6 .
Holden, J., Evans, M. G., Burt, T. P., & Horton, M. 2006. Impact of land drainage on peatland hydrology. Journal of Environmental Quality, 35(5), 1764–1778, doi:10.2134/jeq2005.0477 .
Holden, J., Wearing, C., Palmer, S., Jackson, B., Johnston, K., & Brown, L. E. 2014. Fire decreases near-surface hydraulic conductivity and macropore flow in blanket peat. Hydrological Processes, 28(5), 2868–2876, doi:10.1002/hyp.9875 .
Hooijer, A., Page, S., Jauhiainen, J., Lee, W.A., Lu, X. X., Idris, A., & Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053-1071, doi:10.5194/bg–9–1053–2012 .
Howie, S. A. & Tromp-van Meerveld, I. 2011. The essential role of the lagg in raised bog function and restoration: A review. Wetlands, 31, 613–622, doi:10.1007/s13157–011 0168–5 .
Hvorslev, M. J. 1951. Time lag and soil permeability in ground-water observations (Number 36). Waterways Experiment Station, Corps of Engineers, US Army, https://erdc–library.erdc.dren.mil/jspui/bitstream/11681/4796/1/BUL–36.pdf .
Ingram, H. A. P. 1978. Soil layers in mires: Function and terminology. Journal of Soil Science, volume 29, pages 224-227, doi:10.1111/j.1365–2389.1978.tb02053.x .
Ingram, H. A. P. 1982. Size and shape in raised mire ecosystems: A geophysical model. Nature, volume 297, 300–303, https://doi.org/10.1038/297300a0 .
Kane, D. L. & Stein, J. 1983. Water movement into seasonally frozen soils. Water Resources Research, volume 19(6), 1547–1557, doi:10.1029/WR019i006p01547 .
Kellner, E., Price, J. S., & Waddington, J. M. 2004. Pressure variations in peat as a result of gas bubble dynamics. Hydrological Processes, 18(13), 2599–2605, doi:10.1002/hyp.5650 .
Kettridge, N., Kellner, E., Price, J. S., & Waddington, J. M. 2013. Peat deformation and biogenic gas bubbles control seasonal variations in peat hydraulic conductivity. Hydrological Processes, 27(22), 3208–3216, doi:10.1002/hyp.9369 .
Kettridge, N., Tilak, A. S., Devito, K. J., Petrone, R. M., Mendoza, C. A., & Waddington, J. M. 2016. Moss and peat hydraulic properties are optimized to maximize peatland water use efficiency. Ecohydrology, 9, 1039–1051, doi:10.1002/eco.1708 .
Kleimeier, C., Rezanezhad, F., Van Cappellen, P., & Lennartz, B. 2017. Influence of pore structure on solute transport in degraded and undegraded fen peat soil. Mires and Peat, 19(18), 1–9, doi:10.19189/MaP.2017.OMB.282 .
Kurylyk, B. & Hayashi, M. 2015. Improved Stefan Equation correction factors to accommodate sensible heat storage during soil freezing or thawing. Permafrost and Periglacial Processes, 27(2), 189–203, doi:10.1002/ppp.1865 .
Kyzoil, J. 2002. Effect of physical properties and cation exchange capacity on sorption of heavy metals onto peats. Polish Journal of Environmental Studies, 11(6), 713–718, http://www.pjoes.com/pdf–87512–21371?filename=Effect%20of%20physical.pdf .
Langlois, M. N., Price, J. S., & Rochefort, L. 2015. Landscape analysis of nutrient-enriched margins (lagg) in ombrotrophic peatlands. Science of The Total Environment, 505, 573-586, doi: 10.1016/j.scitotenv.2014.10.007 .
Langlois, M. N., Richardson, M. C., & Price, J. S. 2017. Delineation of peatland lagg boundaries from airborne LiDAR. Journal of Geophysical Research: Biogeosciences, 122(9), 2191–2205, doi:10.1002/2017JG003835 .
Lapen, D. R., Price, J. S., & Gilbert, R. 2005. Modelling two-dimensional steady-state groundwater flow and flow sensitivity to boundary conditions in blanket peat complexes. Hydrological Processes, 19(2), 371–386, doi:10.1002/hyp.1507 .
Liu, H., Forsmann, D. M., Kjærgaard, C., Saki, H., & Lennartz, B. 2017. Solute transport properties of fen peat differing in organic matter content. Journal of Environmental Quality, 46(5), 1106–1113, doi:10.2134/jeq2017.01.0031 .
Liu, H. & Lennartz, B. 2019. Hydraulic properties of peat soils along a bulk density gradient – A meta study. Hydrological Processes, volume 33(1), 101–114, doi:10.1002/hyp.13314 .
Livett, E. A., Lee, J. A., & Tallis, J. H. 1979. Lead, zinc and copper analyses of British blanket peats. Journal of Ecology, volume 67(3), 865–891, doi:10.2307/2259219 .
Locky, D. A., Bayley, S. E., & Vitt, D. H. 2005. The vegetational ecology of black spruce swamps, fens, and bogs in southern boreal Manitoba, Canada. Wetlands, 25(3), 564-582, https://www.academia.edu/1535705/The_vegetational_ecology_of_black_spr uce_swamps_fens_and_bogs_in_southern_boreal_Manitoba_Canada .
McCarter, C. P. R., & Price, J. S. 2013. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecological Engineering, 55, 73–81, doi:10.1016/j.ecoleng.2013.02.003 .
McCarter, C. P. R., & Price, J. S. 2014. Ecohydrology of Sphagnum moss hummocks: mechanisms of capitula water supply and simulated effects of evaporation. Ecohydrology, 7(1), 33–44, doi:10.1002/eco.1313 .
McCarter, C. P. R., & Price, J. S. 2015. The hydrology of the Bois-des-Bel peatland restoration: hydrophysical properties limiting connectivity between regenerated Sphagnum and remnant vacuum harvested peat deposit. Ecohydrology, 8(2), 173–187, doi:10.1002/eco.1498 .
McCarter, C. P. R., & Price, J. S. 2017a. Experimental hydrological forcing to illustrate water flow processes of a subarctic ladder fen peatland. Hydrological Processes, volume 31(8), 1578–1589, doi:10.1002/hyp.11127 .
McCarter, C. P. R., & Price, J. S. 2017b. The transport dynamics of chloride and sodium in a ladder fen during a continuous wastewater polishing experiment. Journal of Hydrology, 549, 558–570, doi:10.1016/j.jhydrol.2017.04.033 .
McCarter, C. P. R., Ketcheson, S., Weber, T. K. D., Whittington, P., Scarlett, S., & Price, J. 2017c. Modified technique for measuring unsaturated hydraulic conductivity in Sphagnum moss and peat. Soil Science Society of America Journal, 81(4), 747–757, doi:10.2136/sssaj2017.01.0006 .
McCarter, C. P. R, Weber, T. K. D., & Price, J. S. 2018. Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat. Journal of Contaminant Hydrology, 217, 17–31, doi:10.1016/j.jconhyd.2018.08.004 .
McCarter, C. P. R., Rezanezhad, F., Gharedaghloo, B., Price. J. S., & Van Cappellen, P. 2019. Transport of chloride and deuterated water in peat: The role of anion exclusion, diffusion, and anion adsorption in a dual porosity organic media. Journal of Contaminant Hydrology, 225, doi:10.1016/j.jconhyd.2019.103497 .
McCarter, C. P. R., Rezanezhad, F., Quinton, W. L., Gharedaghloo, B., Lennartz, B., Price, J., Connon, R., & Van Cappellen, P. 2020. Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes. Earth-Science Reviews, volume 207, doi:10.1016/j.earscirev.2020.103227 .
McKenzie, J. M., Voss, C. I., & Siegel, D. I. 2007. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Advances in Water Resources, volume 30(4), 966–983, doi:10.1016/j.advwatres.2006.08.008 .
Miller, R. D. 1980. Freezing phenomena in soils in Applications of Soil Physics, editor, D. Hillel, Academic Press, San Diego, 254–299, doi:10.1016/B978–0–12–348580–9.50016–X
Moore, P. A., Lukenbach, M. C., Kettridge, N., Petrone, R. M., Devito, K. J., & Waddington, J. M. 2017. Peatland water repellency: Importance of soil water content, moss species, and burn severity. Journal of Hydrology, 554, 656–665, doi:10.1016/j.jhydrol.2017.09.036 .
Morison, M. Q., Petrone, R. M., Wilkinson, S. L., Green, A., & Waddington, J.M. 2020. Ecosystem scale evapotranspiration and CO2 exchange in burned and unburned peatlands: Implications for the ecohydrological resilience of carbon stocks to wildfire. Ecohydrology, 13(2), doi:10.1002/eco.2189 .
Morris, P. J., Waddington, J. M., Benscoter, B. W., & Turetsky, M. R. 2011. Conceptual frameworks in peatland ecohydrology: Looking beyond the two-layered (acrotelmcatotelm) model. Ecohydrology, 4, 1–11, doi:10.1002/eco.191 .
Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522, doi:10.1029/WR012i003p00513 .
NWWG. 1997. National Wetlands Working Group, The Canadian Wetland Classification System, second edition, editors, W.R. Centre, B.G. Warner, and C.D.A. Rubec, University of Waterloo, Waterloo, Ontario, Canada, https://nawcc.wetlandnetwork.ca/Wetland%20Classification%201997.pdf .
Ogata, A. & Banks, R. B. 1961. A solution of the differential equation of longitudinal dispersion in porous media: Fluid movement in earth materials. US Government Printing Office, https://pubs.usgs.gov/pp/0411a/report.pdf .
Page, S. E., Rieley, J. O., Shotyk, Ø. W., & Weiss, D. 2000. Interdependence of peat and vegetation in a tropical peat swamp forest in Changes and Disturbance in Tropical Rainforest in South-East Asia, editors D.M. Newberry, T.H. Clutton-Brock, and G.T. Prance, Imperial College Press, 161–173, doi:10.1142/9781848160125_0014 .
Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya, A., & Limin, S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65, doi:10.1038/nature01131 .
Page, S. E., Rieley, J.O., & Wüst, R. 2006. Lowland tropical peatlands of Southeast Asia. Developments in Earth Surface Processes, 9, 145–172, doi:10.1016/S0928–2025(06)09007 9 .
Pitkänen, A., Turuen, J., & Simola, H. 2011. Comparison of different types of peat corers in volumetric sampling. Suo-Mires and Peat, 62, 51–57, http://www.suo.fi/pdf/article9877.pdf .
Pratte, S., Bao, K., Shen, J., Mackenzie, L., Klamt, A. M., Wang, G., & Xing, W. 2018. Recent atmospheric metal deposition in peatlands of northeast China: A review. Science of The Total Environment, 626, 1284–1294, doi:10.1016/j.scitotenv.2018.01.183 .
Price, J. S. 1994. Patterned Peatlands. The Canadian Geographer, 38(4), 363–367, uwaterloo.ca/wetlands–hydrology/publications/patterned–peatlands .
Price, J. S. 1996. Hydrology and microclimate of a partly restored cutover bog, Quebec. Hydrological Processes, 10(10), 1263–1272, doi:10.1002/(SICI)1099 1085(199610)10:10%3C1263::AID–HYP458%3E3.0.CO;2–1 .
Price, J. S. 2003. Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resources Research, 39, doi:10.1029/2002WR001302 .
Price, J. S., & Maloney, D. A. 1994. Hydrology of a patterned bog-fen complex in southeastern Labrador, Canada. Nordic Hydrology, 25(5), 313–330, doi:10.2166/nh.1994.0011 .
Price, J. S., & Schlotzhauer, S. M. 1999. Importance of shrinkage and compression in determining water storage changes in peat: the case of a mined peatland. Hydrological Processes, 13(16), 2591–2601, doi:10.1002/(SICI)1099–1085(199911)13:16<2591::AID HYP933>3.0.CO;2–E .
Price, J. S., & Whittington, P. N. 2010. Water flow in Sphagnum hummocks: Mesocosm measurements and modelling. Journal of Hydrology, 381(3–4), 333–340, doi:10.1016/j.jhydrol.2009.12.006 .
Price, J.S., Whittington, P.N., Elrick, D.E., Strack, M., Brunet, N., & Faux, E. 2008. A method to determine unsaturated hydraulic conductivity in living and undecomposed Sphagnum moss. Soil Science Society of America Journal, 72(2), 487–491, doi:10.2136/sssaj2007.0111N .
Putra, S. S., Holden, J., & Baird, A. J. 2021. The effects of ditch dams on water-level dynamics in tropical peatlands. Hydrological Processes, 35(5), doi:10.1002/hyp.14174 .
Quillet, A., Larocque, M., Pellerin, S., Cloutier, V., Ferlatte, M., Paniconi, C., & Bourgault, M. A. 2017. The role of hydrogeological setting in two Canadian peatlands investigated through 2D steady-state groundwater flow modelling. Hydrological Sciences Journal, 62(15), 2541–2557, doi:10.1080/02626667.2017.1391387 .
Quinton, W. L., Gray, D. M., & Marsh, P. 2000. Subsurface drainage from hummock covered hillslopes in the arctic tundra. Journal of Hydrology, 237(1–2), 113–125, 10.1016/S0022–1694(00)00304–8 .
Quinton, W. L., Carey, S. K., & Goeller, N. T. 2004. Snowmelt runoff from northern alpine tundra hillslopes: Major processes and methods of simulation. Hydrology and Earth System Sciences, 8, 877–890, doi:10.5194/hess–8–877–2004 .
Quinton, W. L., Hayashi, M., & Carey, S. K. 2008. Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrological Processes, 22, 2829-2837, doi:10.1002/hyp.7027 .
Reeve, A. S., Siegel, D. I., & Glaser, P. 2000. Simulating vertical flow in large peatlands. Journal of Hydrology, 227(1–4), 207–217, doi:10.1016/S0022–1694(99)00183–3
Renou-Wilson, F., Bolger, T., Bullock, C., Convery, F., Curry, J., Ward, S., Wilson, D., & Müller, C. 2011. BOGLAND: Sustainable management of Peatlands in Ireland, STRIVE report series, 181. Environmental Protection Agency, Ireland, 157 pages, https://www.epa.ie/publications/research/land–use–soils–and transport/bogland–sustainable–management–of–peatlands–in–ireland–final report.php .
Rezanezhad, F., Quinton, W. L., Price, J. S., Elliot, T. R., Elrick, D., & Shook, K. R. 2010. Influence of pore size and geometry on peat unsaturated hydraulic conductivity computed from 3D computed tomography image analysis. Hydrological Processes, 299, 2983–2994, doi:10.1002/hyp.7709 .
Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., & Van Cappellen, P. 2016. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75–84, doi:10.1016/j.chemgeo.2016.03.010 .
Redding, T. E., & Devito, K. J. 2006. Particle densities of wetland soils in northern Alberta, Canada. Canadian Journal of Soil Science, volume 86(1), 57–60, doi:10.4141/S05–061 .
Richter, C., & Dainty, J. 1989. Ion behavior in plant cell walls. II. Measurement of the Donnan free space, anion-exclusion space, anion-exchange capacity, and cationexchange capacity in delignified Sphagnum russowii cell walls. Canadian Journal of Botany, 67(2), 460–465, doi:10.1139/b89–064 .
Rippy, J. F. M. & Nelson, P. V. 2007. Cation exchange capacity and base saturation variation among Alberta, Canada, moss peats. Horticultural Science, 42(2), 349–352, doi:10.21273/HORTSCI.42.2.349 .
Rochefort, L., Strack, M., Poulin, M., Price, J. S., Graf, M., Desrochers, A., & Lavoie, C. 2012. Northern peatlands in Wetland Habitats of North America: Ecology and Conservation Concerns, editors D.P. Batzer and A.H. Baldwin, University of California Press, 119–134.
Rosenberry, D. O., Glaser, P. H., & Siegel, D. I. 2006. The hydrology of northern peatlands as affected by biogenic gas: current developments and research needs. Hydrological Processes, 20, 3601–3610, https://doi.org/10.1002/hyp.6377 .
Rothwell, J. J., Evans, M. G., Daniels, S. M., & Allott, T. E. H. 2007. Baseflow and stormflow metal concentrations in streams draining contaminated peat moorlands in the Peak District National Park (UK). Journal of Hydrology, 341(1–2), 90-104, doi:10.1016/j.jhydrol.2007.05.004 .
Rothwell, J. J., Evans, M. G., Daniels, S. M., & Allott, T. E. H. 2008. Peat soils as a source of lead contamination to upland fluvial systems. Environmental Pollution, 153(3), 582-589, doi:10.1016/j.envpol.2007.09.009 .
Roulet, N. T. 1991. Surface level and water table fluctuations in a subarctic fen. Arctic and Alpine Research, 23(3), 303–310.
Rycroft, D. W., Williams, D. J. A., & Ingram, H. A. P. 1975. The transmission of water through peat: II. Field experiments. The Journal of Ecology, 557–568, https://www.jstor.org/stable/pdf/2258735.pdf .
Schindler, U., Durner, W., von Unold, G., Müller, L. 2010. Evaporation method for measuring unsaturated hydraulic properties of soils: Extending the measurement range. Soil Science Society of America Journal, 74(4), 1071–1083, doi:10.2136/sssaj2008.0358 .
Sherwood, J. H., Kettridge, N., Thompson, D. K., Morris, Silins, P. J., U., & Waddington, J. M. 2013. Effect of drainage and wildfire on peat hydrophysical properties. Hydrological Processes, 27(13), 1866–1874, doi:10.1002/hyp.9820 .
Shook, K. , & Pomeroy, J. 2012. Changes in the hydrological character of rainfall on the Canadian prairies. Hydrological Processes, 26, 1752–1766, doi:10.1002/hyp.9383 .
Shotyk, W., Cheburkin, A. K., Appleby, P. G., Fankhauser, A., & Kramers, J. D. 1996. Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth and Planetary Science Letters, 145(1), doi:10.1016/S0012–821X(96)00197–5 .
Shotyk, W. & Noernberg, T. 2020. Sampling, handling, and preparation of peat cores from bogs: review of recent progress and perspectives for trace element research. Canadian Journal of Soil Science, 100(4).
Siegel, D. I., & Glaser, P. H. 1987. Groundwater flow in a bog-fen complex, Lost River Peatland, northern Minnesota. The Journal of Ecology, 743–754, doi:10.2307/2260203 .
Simhayov, R. B., Weber, T. K. D., & Price, J. S. 2018. Saturated and unsaturated salt transport in peat from a constructed fen. SOIL, 4, 63–81, doi:10.5194/soil–4–63–2018 .
Simunek, J., Van Genuchten, M. T., & Sejna, M. 2005. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240, https://www.pc–progress.com/Downloads/Pgm_hydrus1D/HYDRUS1D– 4.08.pdf .
St. Jacques, J. M., & Sauchyn, D. J. 2009. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophysical Research Letters, volume 36(1), doi:10.1029/2008GL035822 .
Sutton, O. 2021. Projecting the hydrological and geochemical evolution of a constructed fen watershed in the Athabasca oil sands region, Alberta, Canada. UWSpace, http://hdl.handle.net/10012/16965 .
Swindles, G. T. 2015. The long-term fate of permafrost peatlands under rapid climate warming. Scientific Reports 5, article 17951, doi:10.1038/srep17951 .
Tarnocai, C. 2006. The effect of climate change on carbon in Canadian peatlands. Global and Planetary Change, 53(4), 222–232, doi:10.1016/j.gloplacha.2006.03.012 .
Taylor, N. & Price, J. 2015. Soil water dynamics and hydrophysical properties of regenerating Sphagnum layers in a cutover peatland. Hydrological Processes, 29(18), 3878–3892, doi:10.1002/hyp.10561 .
Thompson, D. K., Benscoter, B. W., & Waddington, J. M. 2014. Water balance of a burned and unburned forested boreal peatland. Hydrological Processes, 28(24), 5954–5964, doi:10.1002/hyp.10074 .
Tjerngren, I., Karlsson, T., Björn, E., & Skyllberg, U. 2012. Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands. Biogeochemistry, 108(1–3), 335–350, doi:10.1007/s10533–011–9603–1 .
Van Breemen, N. 1995. How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10(7), 270–275, doi:10.1016/0169–5347(95)90007–1 .
Van Genuchten, M. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44(5), 892-898, doi:10.2136/sssaj1980.03615995004400050002x .
Van Genuchten, M. T., & Wagenet, R. J. 1989. Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Science Society of America Journal, 53(5), 1303–1310, doi:10.2136/sssaj1989.03615995005300050001x .
Vitt, D. H., & Chee, W. L. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio, 89(2), 87–106, doi:10.1007/BF00032163 .
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K., & Moore, P. A. 2015. Hydrological feedbacks in northern peatlands. Ecohydrology, 8(1), 113–127, doi:10.1002/eco.1493 .
Waddington, J. M., & Roulet, N. T. 1997. Groundwater flow and dissolved carbon movement in a boreal peatland. Journal of Hydrology, 191(1–4), 122–138.
Watanabe, K., & Flury, M. 2008. Capillary bundle model of hydraulic conductivity for frozen soil. Water Resources Research, 44(12), doi:10.1029/2008WR007012 .
Weber, T. K. D., Iden, S. C., & Durner, W. 2017. A pore-size classification for peat bogs derived from unsaturated hydraulic properties. Hydrology and Earth System Sciences, 21(12), 6185–6200, doi:10.5194/hess–21–6185–2017 .
Whittington, P., Koiter, A., Watts, D., Brewer, A., & Golubev, V. 2021. Bulk density, particle density, and porosity of two species of Sphagnum: Variability in measurement techniques and spatial distribution. Soil Science Society of America Journal, 85(6), 2220–2233, doi:10.1002/saj2.20327 .
Whittington, P. N. & Price, J. S. 2006. The effects of water table draw-down (as a surrogate for climate change) on the hydrology of a fen peatland, Canada. Hydrology Processes, 20(17), 3589–3600, doi:10.1002/hyp.6376 .
Wilkinson, S. L., Moore, P.A., Flannigan, M. D., Wotton, B. M., & Waddington, J. M. 2018. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environmental Research Letters, 13(1), https://iopscience.iop.org/article/10.1088/1748–9326/aaa136 .
Wilkinson, S. L., Verkaik, G. J., Moore, P. A., & Waddington, J. M. 2020. Threshold peat burn severity breaks evaporation-limiting feedback. Ecohydrology, 13(1), doi:10.1002/eco.2168 .
Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. 2008. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena, 73(2).
Wösten, J. H. M., Page, S. E., & Limin, S. H. 2007. Implications of groundwater level fluctuations for a tropical peatland ecosystem in southeast Asia in Proceedings of International Symposium and Workshop on Tropical Peatland, Leicester: CARBOPEAT, University of Leicester, pages 212–224.
Xu, J., Morris, P. J., Liu, J., & Holden, J. 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 160, 134–140, doi:10.1016/j.catena.2017.09.010 .
Zoltai, S. C., & Vitt, D. H. 1995. Canadian wetlands: environmental gradients and classification. Vegetatio, 118(1), 131–137, doi:10.1007/BF00045195 .