9 References

Allen, R.J. and B. Waclaw, 2019, Bacterial growth: a statistical physicist’s guide. Reports on Progress in Physics, volume 82, number 1, 16601, doi: 10.1088/1361-6633/aae546.

Amend, J.P. and A. Teske, 2005, Expanding frontiers in deep subsurface microbiology. Palaeogeography, Palaeoclimatology, Palaeoecology, volume 219, pages 131-155, doi: 10.1016/j.palaeo.2004.10.018.

Anbu, P., C.H. Kang, Y.J. Shin, and J.S. So, 2016, Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, volume 5, page 250, doi: 10.1186/s40064-016-1869-2.

Anderson, C.R., R.E. James, E.C. Fru, C.B. Kennedy, and K. Pedersen, 2006, In situ ecological development of a bacteriogenic iron oxide-producing microbial community from a subsurface granitic rock environment. Geobiology, volume 4, issue 1, pages 29-42, doi: 10.1111/j.1472-4669.2006.00066.x.

Bamforth, S.M. and I. Singleton, 2005, Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology, volume 80, issue 7, pages 723-736, doi: 10.1002/jctb.1276.

Bar-On, Y.M., R. Phillips, R. Milo, 2018, The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the USA, volume 115, issue 25, pages 6506-6511, doi: 10.1073/pnas.1711842115.

Benz, S.A., P. Bayer, P. Blum, 2017, Global patterns of shallow groundwater temperatures. Environmental Research Letters, volume 12, number 3, 034005, doi: 10.1088/1748-9326/aa5fb0.

Bethke, C.M., R.A. Sanford, M.F. Kirk, Q. Jin, and T.M. Flynn, 2011, The thermodynamic ladder in geomicrobiology. American Journal of Science, volume 311, issue 3, pages 183-210, doi: 10.2475/03.2011.01.

Bird, L.J., V. Bonnefoy and D.K. Newman, 2011, Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology, volume 19, issue 7, pages 330-340, doi: 10.1016/j.tim.2011.05.001.

Bonte, M., W.F.M. Röling, E. Zaura, P.W.J.J. van der Wielen, P.J. Stuyfzand, and B.M. van Breukelen, 2013a, Impacts on shallow geothermal energy production on redox processes and microbial communities. Environmental Science and Technology, volume 47, issue 24, pages 14476-14484, doi: 10.1021/es4030244.

Bonte, M., B.M. van Breukelen, and P.J. Stuyfzand, 2013b, Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Research, volume 47, issue 14, pages 5088-5100, doi: 10.1016/j.watres.2013.05.049.

Brun, A. and P. Engersgaard, 2002, Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development. Journal of Hydrology, volume 256, pages 211-227, doi: 10.1016/S0022-1694(01)00547-9.

Chandra, S., R. Sharma, K. Singh, and A. Sharma, 2013, Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of Microbiology, volume 63, pages 417-431, doi: 10.1007/s13213-012-0543-3.

Chanyi, R.M. and S.F. Koval, 2014, Role of type IV pili in predation by Bdellovibrio bacteriovorus. PLoS ONE volume 9, issue 11, page e113404, doi: 10.1371/journal.pone.0113404.

Chapelle, F. H., 2000, The significance of microbial processes in hydrogeology and geochemistry. Hydrogeology Journal, volume 8, pages 41-46, doi: 10.1007/PL00010973.

Christensen, T.H., P.L. Bjerg, and P. Kjeldsen, 2000, Natural attenuation: a feasible approach to remediation of ground water pollution at landfills? Ground Water Monitoring and Remediation, volume 20, number 1, pages 69-77, doi: 10.1111/j.1745-6592.2000.tb00253.x.

Colwell, F.S. and S. D’Hondt, 2013, Nature and extent of the deep biosphere. Reviews in Mineralogy and Geochemistry, volume 75, number 1, pages 547-574, doi: 10.2138/rmg.2013.75.17.

Edwards, B.A., V.L. Shirokova, A.M.L. Enright, and F.G. Ferris, 2018. Dependence of in situ bacterial Fe(II)-oxidation and Fe(III)-precipitation on sequential reactive transport. Geomicrobiology Journal, 2018, volume 35, issue 6, pages 503-510, doi: 10.1080/01490451.2017.1394929.

Erbs, M., H.C.B. Hansen, and C.E. Olsen, 1999, Reductive dechlorination of carbon tetrachloride using Iron(II) Iron (III) hydroxy sulfate (green rust). Environmental Science and Technology, volume 33, number 2, pages 307-311, doi: 10.1021/es980221t.

Eltarahony, M., S. Zaki, and D. Abd-El-Haleem, 2020, Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases. Scientific Reports, volume 10, number 4029, doi: 10.1038/s41598-020-60951-1.

Emerson, D., E.J. Fleming, and J.M. McBeth, 2010, Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Reviews of Microbiology, volume 64, pages 561-583, doi: 10.1146/annurev.micro.112408.134208.

Enright, A.M.L. and F.G. Ferris, 2016, Bacterial Fe(II)-oxidation distinguished by long-range correlation in redox potential. Journal of Geophysical Research – Biogeosciences, volume 121, issue 5, pages 1249-1257, doi: 10.1002/2015JG003306.

Enright, A.M.L., B.A. Edwards, and F.G. Ferris, 2019, Long range correlation in redox potential fluctuations signals energetic efficiency of bacterial Fe(II) oxidation. Scientific Reports, volume 9, issue 1, number 4018, doi: 10.1038/s41598-019-40499-5.

Falkowski, P.G., T. Fenchel, and E.F. Delong, 2008, The microbial engines that drive Earth’s biogeochemical cycles. Science, volume 320, issue 5879, pages 1034-1039, doi: 10.1126/science.1153213.

Ferris, F.G. and L.G. Stehmeier, 1992, Bacteriogenic mineral plugging. U.S. Patent Number US5143155A.

Ferris, F.G., L.G. Stehmeier, A. Kantzas, and F.M. Mourits, 1996, Bacteriogenic mineral plugging. Journal of Canadian Petroleum Technology, volume 35, issue 8, doi: 10.2118/96-08-06.

Ferris, F.G., R.O. Hallberg, B. Lyven, and K. Pedersen, 2000, Retention of strontium, cesium, lead, and uranium by bacterial iron oxides from a subterranean environment. Applied Geochemistry, volume 15, issue 7, pages 1035-1042, doi: 10.1016/S0883-2927(99)00093-1.

Ferris, F.G., V.R. Phoenix, Y. Fujita, and R.W. Smith, 2004, Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochimica et Cosmochimica Acta, volume 68, issue 8, pages 1701-1710, doi: 10.1016/S0016-7037(03)00503-9.

Fortin, D., F.G. Ferris, and T.J. Beveridge, 1997, Surface-mediated mineral development by bacteria. Reviews in Mineralogy and Geochemistry, volume 35, doi: 10.1515/9781501509247-007.

Fujita, Y., F.G. Ferris, R. D. Lawson, F. S. Colwell, and R. W. Smith, 2000, Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal, volume 17, issue 4, pages 305-318, doi: 10.1080/782198884.

Genin, J-M., P. Refait, G. Bourrie, M. Abdelmoula, and F. Trolard, 2001, Structure and stability of the Fe(II)-Fe(III) green rust “fougerite” mineral and its potential for reducing pollutants in soil solutions. Applied Geochemistry, volume 16, issue 5, pages 559-570, doi: 10.1016/S0883-2927(00)00043-3.

Gleeson, T., K.M. Befus, S. Jasechko, E. Luijendijk, and M.B. Cardenas, 2015, The global volume and distribution of modern groundwater. Nature Geoscience, volume 9, pages 161-169, doi: 10.1038/ngeo2590.

Glynn, P.D. and L.N. Plummer, 2005, Geochemistry and the understanding of ground-water systems. Hydrogeology Journal, volume 13, pages 263-287, doi: 10.1007/s10040-004-0429-y.

Gorra, R., G. Webster, M. Martin, L. Celi, F. Mapelli, and A.J. Weightman, 2012, Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. Microbial Ecology, volume 64, issue 1, pages 171-186, doi: 10.1007/s00248-012-0014-1.

Groffman, A.R. and L.J. Crossey, 1999, Transient redox regimes in a shallow alluvial aquifer. Chemical Geology, volume 161, issue 4, pages 415-442, doi: 10.1016/S0009-2541(99)00119-9.

Hao, L., J. Li, A. Kappler, and M. Obst, 2013, Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy. Applied and Environmental Microbiology, volume 79, issue 21, pages 6524-6534, doi: 10.1128/aem.02454-13.

Haritash, A.K. and C.P. Kaushik, 2009. Biodegradation aspects of polycyclic aromatic` hydrocarbons (PAHs): a review. Journal of Hazardous Materials, volume 169, issues 1-3, pages 1-15, doi: 10.1016/j.jhazmat.2009.03.137.

Heim, N.A., J.L. Payne, S. Finnegan, M.L. Knope, M. Kowalewski, S.K. Lyons, D.W. McShea, P.M. Novack-Gottshall, F.A. Smith, and S.C. Wang, 2017, Hierarchical complexity and the size limits of life. Proceedings of the Royal Society B, volume 284, issue 1857, doi: 10.1098/rspb.2017.1039.

Hoehler, T.M. and B.B. Jorgensen, 2013, Microbial life under extreme energy limitation. Nature Reviews Microbiology, volume 11, pages 83-94, doi: 10.1038/nrmicro2939.

Hopkins, G.D., L. Semprini, and P.L. McCarty, 1993, Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Applied and Environmental Microbiology, volume 59, number 7, pages 2277-2285, doi: 10.1128/aem.59.7.2277-2285.1993.

Jack, T.R., L.G. Stehmeier, M.R. Islam, and F.G. Ferris, 1991, Microbial selective plugging to control water channeling. Developments in Petroleum Science, volume 31, pages 433-440, doi: 10.1016/S0376-7361(09)70176-1.

Jack, T.R., F.G. Ferris, L.G. Stehmeier, A. Kantzas, and D.F. Marentette, 1993, Bug Rock: bacteriogenic mineral precipitation systems for oil patch use. Developments in Petroleum Science, volume 39, pages 27-35, doi: 10.1016/S0376-7361(09)70047-0.

Janssen D.B. and G. Stucki, 2020, Perspectives of genetically engineered microbes for groundwater bioremediation. Environmental Science: Processes & Impacts, volume 22, issue 3, pages 487-499, doi: 10.1039/c9em00601j.

Jin, Y. and M. Flury, 2002, Fate and transport of viruses in porous media. Advances in Agronomy, volume 77, pages 39-102, doi: 10.1016/S0065-2113(02)77013-2.

Kallmeyer, J., R. Pockalny, R.R. Adhikari, D.C. Smith, and S. D’Hondt, 2012, Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the USA, volume 109, number 40, pages 16213-16216, doi: 10.1073/pnas.1203849109.

Katsoyiannis, I.A. and A.I. Zouboulis, 2006, Use of iron- and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater. Water Quality Research Journal of Canada, volume 41, issue 2, pages 117-129, doi: 10.2166/wqrj.2006.014.

Kennedy, C.B., A.G. Gault, I.D. Clark, D. Fortin, and F.G. Ferris, 2011, Retention of iodide by bacteriogenic iron oxides. Geomicrobiology Journal, volume 28, issue 5-6, pages 387-395, doi: 10.1080/01490451003653110.

Kielhorn, J., C. Melber, U. Wahnschaffe, A. Aitio, and I. Mangelsdorf, 2000, Vinyl chloride: still a cause for concern. Environmental Health Perspectives, volume 108, number 7, pages 579-588, doi: 10.1289/ehp.00108579.

Kleanthous, C. and J.P. Armitage, 2015, The bacterial cell envelope. Philosophical Transactions of the Royal Society B, volume 370, issue 1679, doi: 10.1098/rstb.2015.0019.

Konhauser, K.O., 2007, Introduction to Geomicrobiology, Wiley-Blackwell.

Kulczycki, E., F.G. Ferris, and D. Fortin, 2002, Impact of cell wall structure on the behavior of bacterial cells as sorbents of cadmium and lead. Geomicrobiology Journal, volume 19, issue 6, pages 553-565, doi: 10.1080/01490450290098586.

Kulczycki, E., D.A. Fowle, D. Fortin, and F.G. Ferris, 2005, Sorption of cadmium and lead by bacteria-ferrihydrite composites. Geomicrobiology Journal, volume 22, issue 6, pages 299-310, doi: 10.1080/01490450500184694.

Kuma, A.R. and P. Riyazuddin, 2012, Seasonal variation of redox species and redox potentials in shallow groundwater: a comparison of measured and calculated redox potentials. Journal of Hydrology, volumes 444-445, pages 187-198, doi: 10.1016/j.jhydrol.2012.04.018.

Kump, L.R., S.R. Brantley, and M.A. Arthur, 2000, Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Science, volume 28, pages 61-667, doi: 10.1146/annurev.earth.28.1.611.

Kyle, J.E., H.S.C. Eydal, F.G. Ferris, and K. Pedersen, 2008, Viruses in granitic groundwater from 69 to 450 m depth of the Aspo hard rock laboratory, Sweden. ISME Journal, volume 2, pages 571-574, doi: 10.1038/ismej.2008.18.

Langley, S., A.G. Gault, A. Ibrahim, Y. Takahashi, R. Renaud, D. Fortin, I.D. Clark, and F.G. Ferris, 2009a, A comparison of the rates of Fe(III) reduction in synthetic and bacteriogenic iron oxides by Shewanella putrefaciens CN32. Geomicrobiology Journal, volume 26, issue 2, pages 57-70, doi: 10.1080/01490450802674905.

Langley, S., A.G. Gault, A. Ibrahim, Y. Takahashi, R. Renaud, D. Fortin, I.D. Clark, and F.G. Ferris, 2009b, Strontium de-sorption from bacteriogenic iron oxides (BIOS) subjected to microbial Fe(III) reduction. Chemical Geology, volume 262, issue 3-4, pages 218-228, doi: 10.1016/j.chemgeo.2009.01.019.

Langmuir, D., 1997, Aqueous Environmental Geochemistry. Prentice Hall, New Jersey, USA.

LaRowe, D.E. and J.P. Amend, 2015, Catabolic rates, population sizes and doubling/replacement times of microorganisms in the natural settings. American Journal of Science, volume 315, issue 3, pages 167-203, doi: 10.2475/03.2015.01.

LaRowe, D.E. and J.P. Amend, 2019, Energy limits for life in the subsurface. Deep carbon: past to present. B. Orcutt, I. Daniel, R. Dasgupta (editors), Cambridge University Press, Cambridge, United Kingdom, pages 585-619.

Liebensteiner, M.G., N. Tsesmetzis, A.J.M. Stams, and B.P. Lomans, 2014, Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs. Frontiers in Microbiology, volume 5, page 428, doi: 10.3389/fmicb.2014.00428.

Lin, D., E.I. Larsen, G.R. Larsen, M.E. Cox, and J.E. Smith, 2012, Bacterially mediated iron cycling and associated biogeochemical processes in a subtropical shallow coastal aquifer: implications for groundwater quality. Hydrobiologia, volume 696, issue 1, pages 63-76, doi: 10.1007/s10750-012-1184-z.

Lindberg, R.D. and D.D. Runnells, 1984, Ground water redox reactions: and analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science, volume 225, pages 925-927, doi: 10.1126/science.225.4665.925.

Locey, K.J. and J.T. Lennon, 2016, Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the USA, volume 113, pages 5970-5975, doi: 10.1073/pnas.1521291113.

Louca, S., F. Mazel, M. Doebeli, and L.W. Parfrey, 2019, A census-based estimate of Earth’s bacterial and archaeal diversity. PLOS Biology, volume 17, page e3000106, doi: 10.1371/journal.pbio.3000106.

Lovley, D.R. and J.D. Coates, 1997, Bioremediation of metal contamination. Current Opinion In Biotechnology, volume 8, issue 3, pages 285-289, doi: 10.1016/s0958-1669(97)80005-5.

Macler, B.A. and J.C. Merkle, 2000, Current knowledge on groundwater microbial pathogens and their control. Hydrogeology Journal, volume 8, number 1, pages 29-40, doi: 10.1007/PL00010972.

Magnabosco, C., L.H. Lin, H. Dong, M. Bomberg, W. Ghirose, H. Stan-Lotter, K. Pedersen, T.L. Kieft, E. van Heerden, and T.C. Onstott, 2018, The biomass and biodiversity of the continental subsurface. Nature Geoscience, volume 11, pages 707-717, doi: 10.1038/s41561-018-0221-6.

Marshall, K.C., 2013, Planktonic versus sessile life of prokaryotes. The Prokaryotes – Prokaryotic Communities and Ecophysiology, E. Rosenberg et al. (editors), Springer-Verlag, Berlin, doi: 10.1007/978-3-642-30123-0_49.

Martinez, R.E. and F.G. Ferris, 2001, Chemical equilibrium modeling techniques for the analysis of high-resolution bacterial metal sorption data. Journal of Colloid and Interface Science, volume 243, issue 1, pages 73-80, doi: 10.1006/jcis.2001.7865.

McDougald, D., S.A. Rice, N. Barraud, P.D. Steinberg, and S. Kjelleberg, 2012, Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Reviews Microbiology, volume 10, pages 39-50, doi: 10.1038/nrmicro2695.

McKay, L., J.A. Cherry, R.C. Bales, M.T. Yahya, and C.P. Gerba, 1993, A field example of bacteriophage as tracers of fracture flow. Environmental Science and Technology, volume 27, issue 6, pages 1075-1079, doi: 10.1021/es00043a006.

McMahon, P.B. and F.H. Chapelle, 2008, Redox processes and water quality of selected principal aquifer systems. Groundwater, volume 46, issue 2, pages 259-271, doi: 10.1111/j.1745-6584.2007.00385.x.

Meckenstock, R.U. et al., 2015, Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environmental Science and Technology, volume 49, issue 12, pages 7073-7081, doi: 10.1021/acs.est.5b00715.

Meckenstock, R.U. et al., 2016, Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. Journal of Molecular Microbiology and Biotechnology, volume 26, issues 1-3, pages 92-118, doi: 10.1159/000441358.

Menberg, K., P. Blum, B.L. Kuryluk, and P. Bayer, 2014, Observed groundwater temperature response to recent climate change. Hydrology and Earth System Sciences, volume 18, issue 11, pages 4453-4466, doi: 10.5194/hess-18-4453-2014.

Minto, J.M., E. MacLachlan, G. El Mountassir, and R.J. Lunn, 2016, Rock fracture grouting with microbially induced carbonate precipitation. Water Resources Research, volume 52, issue 11, pages 8827-8844, doi: 10.1002/2016WR018884.

Mitchell, A.C. and F.G. Ferris, 2005, The co-precipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochimica et Cosmochimica Acta, volume 69, issue 17, pages 4199-4210, doi: 10.1016/j.gca.2005.03.014.

Mohn, W.W. and J.M. Tiedje, 1992, Microbial reductive dehalogenation. Microbiological Reviews, volume 56, issue 3, pages 482-507, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372880/.

Mora, C., D.P. Tittensor, S. Adl, A.G.B. Simpson, and B. Worm, 2011, How many species are there on Earth and in the ocean? PLOS Biology, volume 9, issue 8, page e1001127, doi: 10.1371/journal.pbio.1001127.

Pandey, P.K., P.H. Kass, M.L. Soupir, S. Biswas, and V.P. Singh, 2014, Contamination of water resources by pathogenic bacteria. AMB Express, volume 4, page 51, doi: 10.1186%2Fs13568-014-0051-x.

Pang, L., M. Close, M. Goltz, L. Sinton, H. Davies, C. Hall, and G. Stanton, 2004, Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages. Environment International, volume 29, issue 7, pages 907-921, doi: 10.1016/S0160-4120(03)00054-0.

Parmar, N., Y.A. Gorby, T.J. Beveridge, and F.G. Ferris, 2001, Formation of green rust and immobilization of nickel in response to bacterial reduction of hydrous ferric oxide. Geomicrobiology Journal, volume 18, issue 4, pages 375-385, doi: 10.1080/014904501753210549.

Perez, J.P.H., A.A. Schiefler, S.N. Rubio, M. Reischer, N.D. Overheu, L.G. Benning, and D.J. Tobler, 2021, Arsenic removal from natural groundwater using ‘green rust’: solid phase stability and contaminant fate. Journal of Hazardous Materials, volume 401, page 123327, doi: 10.1016/j.jhazmat.2020.123327.

Phoenix, V.R., A.A. Korenevsky, F.G. Ferris, Y.A. Gorby, and T.J. Beveridge, 2007, Influence of lipopolysaccharide on the surface proton-binding behavior of shewanella spp. Current Microbiology, volume 55, pages 152-157, doi: 10.1007/s0028400700772.

Rebata-Landa, V. and J.C. Santamarina, 2006, Mechanical limits to microbial activity in deep sediments. Geochemistry, Geophysics, Geosystems, volume 71, doi: 10.1029/2006GC001355.

Roden, E.E., D. Sobolev, B. Glazer, and G.W. Luther III, 2004, Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiology Journal, volume 21, issue 6, pages 379-391, doi: 10.1080/01490450490485872.

Schwarz, M., F. Giadrossich, P. Lüscher, and P.F. Germann, 2018, Subsurface hydrological connectivity of vegetated slopes: a new modeling approach. Hydrology and Earth System Sciences Discussions, doi: 10.5194/hess-2017-761.

Semprini, L., P.V. Roberts, G.D. Hopkins, and P.L. McCarty, 1990. A field evaluation of in-situ biodegradation of chlorinated ethenes, part 2, the results of biostimulation and biotransformation experiments. Ground Water, volume 28, pages 715-727, doi: 10.1111/j.1745-6584.1990.tb01987.x.

Semprini, L. and P.L. McCarty, 1991, Comparison between model simulations and field results for in‐situ biorestoration of chlorinated aliphatics, part 1, biostimulation of methanotrophic bacteria. Groundwater, volume 29, issue 3, pages 365-374, doi: 10.1111/j.1745-6584.1991.tb00527.x.

Shelobolina, E., H. Xu, H. Konishi, R. Kukkadapu, T. Wu, M. Blöthe, and E.E. Roden, 2012, Microbial lithotrophic oxidation of structural Fe(II) in biotite. Applied and Environmental Microbiology, volume 78, issue 16, pages 574-5752, doi: 10.1128/aem.01034-12.

Shen, Y., F.H. Chapelle, E.W. Strom, R. Benner, 2015, Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry, volume 122, pages 61-78, doi: 10.1007/s10533-014-0029-4.

Shirokova, V.L. and F.G. Ferris, 2013, Microbial diversity and biogeochemistry of a shallow pristine Canadian Shield groundwater system. Geomicrobiology Journal, volume 30, pages 140-149, doi: 10.1080/01490451.2011.654378.

Shirokova, V.L., A.M.L. Enright, C.B. Kennedy, and F.G. Ferris, 2016, Thermal intensification of microbial Fe(II)/Fe(III) redox cycling in a pristine shallow sand aquifer on the Canadian Shield. Water Research, volume 106, pages 604-612, doi: 10.1016/j.watres.2016.10.050.

Shoemaker, W.B., K.J. Cunningham, E.L. Kuniansky, and J. Dixon, 2008, Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers. Water Resources Research, volume 44, issue 3, page W03501, doi: 10.1029/2007WR006601.

Small, T.D., L.A. Warren, and F.G. Ferris, 2001, Influence of ionic strength on strontium sorption to bacteria, Fe(III)-oxide, and composite bacteria-Fe(III) oxide surfaces. Applied Geochemistry, volume 16, issue 7-8, pages 939-946, doi: 10.1016/S0883-2927(00)00065-2.

Smith, D.S. and F.G. Ferris, 2001, Computational and experimental approaches to studying metal interactions with microbial biofilms. Methods in Enzymology, volume 337, pages 225-242, doi: 10.1016/S0076-6879(01)37017-9.

Sokolov, I., D.S. Smith, G.S. Henderson, Y.A. Gorby, and F.G. Ferris, 2001, Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens. Environmental Science and Technology, volume 35, issue 2, pages 341-347, doi: 10.1021/es001258s.

Steefel, C.I., D.J. DePaolo, and P.C. Lichtner, 2005, Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth and Planetary Science Letters, volume 240, issues 3-4, pages 539-558, doi: 10.1016/j.epsl.2005.09.017.

Stolper, D.A., N.P. Revsbech, and D.E. Canfield, 2010, Aerobic growth at nanomolar oxygen concentrations. Proceedings of the National Academy of Sciences of the USA, volume 107, issue 44, pages 18755-18760, doi: 10.1073/pnas.1013435107.

Stumm, W. and J.J. Morgan, 1995, Aquatic chemistry. Wiley, New York.

Taylor, R., A. Cronin, S. Pedley, J. Barker, and T. Atkinson, 2004, The implications of groundwater velocity variations on microbial transport and wellhead protection – review of field evidence. Federation of European Microbiological Societies Microbiology Ecology, volume 49, issue 1, pages 17-26, doi: 10.1016/j.femsec.2004.02.018.

Taylor, C.A. and H.G. Stefan, 2009, Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology, volume 375, issues 3-4, pages 601-612, doi: 10.1016/j.jhydrol.2009.07.009.

Tesoriero, A.J., S. Terziotti, and D.B. Abrams, 2015, Predicting redox conditions in groundwater at a regional scale. Environmental Science and Technology, volume 49, issue 16, pages 9657-9664, doi: 10.1021/acs.est.5b01869.

Tufenkji, N., 2007, Modeling microbial transport in porous media: traditional approaches and recent developments. Advances in Water Resources, volume 30, issues 6-7, pages 1455-1469, doi: 10.1016/j.advwatres.2006.05.014.

USEPA, 1998, Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater, EPA/600/R-98/128, Washington D.C.

USEPA, 2002, Onsite wastewater treatment systems manual systems, EPA/625/R00/008.

USEPA, 2013, Introduction to in situ bioremediation of groundwater. Office of Solid Waste and Energy Response, Division of Solid Waste and Energy Response, EPA/542-R-13-018.

Varjani, S. J. and V. N. Upasani, 2017, A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration and Biodegradation, volume 120, pages 71-83, doi: 10.1016/j.ibiod.2017.02.006.

Wang, F., A.M. Burrage, S. Postel, R.E. Clark, A. Orlova, E.J. Sundberg, D.B. Kearns, and E.H. Egelman, 2017, A structural model of flagellar filament switching across multiple bacterial species. Nature Communications, volume 8, page 960, doi: 10.1038/s41467-017-01075-5.

Warren, L.A. and F.G. Ferris, 1998, Continuum between sorption and precipitation of Fe(III) on bacterial cell surfaces. Environmental Science and Technology, volume 32, issue 15, pages 2331-2337, doi: 10.1021/es9800481.

Wilson, M.J., 2004, Weathering of the primary rock-forming minerals: processes, products, and rates. Clay Minerals, volume 39, issue 3, pages 233-266, doi: 10.1180/0009855043930133.

Zhu, T. and M. Dittrich, 2016, Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Frontiers in Bioengineering and Biotechnology, volume 4, page 4, doi: 10.3389/fbioe.2016.00004.

Zobell, C.E., 1946, Studies on redox potential of marine sediments. American Association of Petroleum Geologists Bulletin, volume 30, issue 4, pages 477-513, doi: 10.1306/3D933808-16B1-11D7-8645000102C1865D.


Groundwater Microbiology Copyright © 2021 by F. Grant Ferris, Natalie Szponar, and Brock A. Edwards. All Rights Reserved.