Solution Exercise 1 – Meteoric Water Lines

Step-by-step calculation is shown in the tables and calculations that follow.

 

Calculation of a meteoric water line

Location

Date

Precipitation

     mm

δ18O

δD

18Oi– δ𝟏𝟖𝐎̅̅̅̅̅)2

(δDi − δ𝐃̅̅̅̅)2

18Oi − δ𝟏𝟖̅̅̅̅𝐎̅)
(δDi − δ𝐃̅̅)

UCT

Jan 2010

9

0.75

9.7

8.619

342.87

54.36

UCT

Feb 2010

12

-0.54

-5.8

2.709

9.10

4.96

UCT

Mar 2010

7

-0.83

0.4

1.838

84.95

12.50

UCT

Apr 2010

44

-2.25

-12.1

0.004

10.78

0.21

UCT

May 2010

277

-2.78

-8.4

0.353

0.17

-0.25

UCT

Jun 2010

222

-3.31

-17.0

1.264

66.97

9.20

UCT

Jul 2010

166

-3.69

-15.0

2.263

38.23

9.30

UCT

Aug 2010

121

-1.74

-4.9

0.199

15.34

1.75

UCT

Sep 2010

100

-2.24

-3.3

0.003

30.43

-0.30

UCT

Oct 2010

102

-2.15

-3.3

0.001

30.43

0.20

UCT

Nov 2010

73

-2.39

-6.2

0.042

6.85

-0.53

UCT

Dec 2010

17

-5.06

-39.9

8.261

966.17

89.34

Total

Mean

Mean

SS-δ18O

SS-δD

SP-δ18O-δD

1150

-2.19

-8.82

25.56

1602.30

180.74

SS = sum of squares; SP = sum of products.

For the best fit line by RMA (reduced major axis) regression:

[latex]\begin{aligned} & \text { the gradient }=\sqrt{\frac{S S \delta D}{S S \delta^{18} O}}=\sqrt{\frac{1602.30}{25.56}}=7.92 \\ & \text { the intercept }=\overline{\delta D}-\left(7.92 \overline{\delta^{18} O}\right)=-8.8-(7.92(-2.19))=8.49 \end{aligned}[/latex]

therefore, the LMWLUCT2010 is D = 7.9218O + 8.49

Pearson’s r, the sample correlation coefficient

[latex]{=r}_{^{18}OD}=\frac{{SP}^{18}OD}{\sqrt{{SS}^{18}O}\sqrt{SSD}}=\frac{180.74}{\sqrt{25.56}\sqrt{1602.30}}=0.893[/latex]

 

Calculation of a precipitationweighted meteoric water line

Location

Date

Precipitation

     mm

δ18O

δD

Rain-fraction
(rf)

 

UCT

Jan 2010

9

0.75

9.7

0.0078

0.0059

0.0759

0.067

2.68

0.43

UCT

Feb 2010

12

-0.54

-5.8

0.0104

-0.0056

-0.0605

0.028

0.09

0.05

UCT

Mar 2010

7

-0.83

0.4

0.0061

-0.0051

0.0024

0.011

0.52

0.08

UCT

Apr 2010

44

-2.25

-12.1

0.0383

-0.0861

-0.4630

0.000

0.41

0.01

UCT

May 2010

277

-2.78

-8.4

0.2409

-0.6696

-2.0233

0.085

0.04

-0.06

UCT

Jun 2010

222

-3.31

-17.0

0.1930

-0.6390

-3.2817

0.244

12.93

1.78

UCT

Jul 2010

166

-3.69

-15.0

0.1443

-0.5326

-2.1652

0.327

5.52

1.34

UCT

Aug 2010

121

-1.74

-4.9

0.1052

-0.1831

-0.5156

0.021

1.61

0.18

UCT

Sep 2010

100

-2.24

-3.3

0.0870

-0.1948

-0.2870

0.000

2.65

-0.03

UCT

Oct 2010

102

-2.15

-3.3

0.0887

-0.1907

-0.2927

0.000

2.70

0.02

UCT

Nov 2010

73

-2.39

-6.2

0.0635

-0.1517

-0.3936

0.003

0.43

-0.03

UCT

Dec 2010

17

-5.06

-39.9

0.0148

-0.0748

-0.5898

0.122

14.28

1.32

Total

Mean

Mean

Sum

Sum

Sum

1150

-2.19

-8.82

1.00

-2.73

-9.99

0.909

43.98

5.08

SS = sum of squares; SP = sum of products; rf = rain fraction (i.e., weighted by precipitation).

For the best fit line by RMA (reduced major axis) regression:

[latex]\begin{aligned} & \text { the gradient }=\sqrt{\frac{S S \times r f \delta D}{S S \times r f \delta^{18} O}}=\sqrt{\frac{43.98}{0.909}}=6.95 \\ & \text { the intercept }=\sum r f . \delta D-6.95 \sum r f . \delta^{18} O=-9.99-(6.95(-2.73))=8.96 \end{aligned}[/latex]

the precipitation weighted LMWLUCT2010 is δD = 6.95δ18O + 8.96

Pearson’s r, the sample correlation coefficient

[latex]r_{r f \delta^{18} O \delta D}=\frac{\operatorname{SPrf} \delta^{18} O \delta D}{\sqrt{\operatorname{SSrf} \delta^{18} O} \sqrt{\operatorname{SSrf} \delta D}}=\frac{5.08}{\sqrt{0.909} \sqrt{43.87}}=0.805[/latex]

Return to Exercise 1

License

Stable Isotope Hydrology Copyright © 2022 by Roger E. Diamond. All Rights Reserved.