7 References

Aeschbach-Hertig, W., 2004, NOBLEBOOK online MicroSoft Excel Workbook for inverse modeling of dissolved noble gases, https://www.iup.uni-heidelberg.de/research/hydrotrap/noblebook.

Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer, 1999, Interpretation of dissolved atmospheric noble gases in natural waters. Water Resource Research, volume 35, number 9, pages 2779-2792.

Aeschbach-Hertig, W. and D.K. Solomon, 2013, Noble gas thermometry in groundwater hydrology. In, P. Burnard, editor, The Noble Gases as Geochemical Tracers. Springer, Berlin, Heidelberg, pages 81-122.

Araguas-Araguas, L., K. Froelich, and K. Rozanski, 2000, Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes, volume 14, pages 1341-1355.

Barnes, C.J. and G.B. Allison, 1988, Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. Journal of Hydrology, volume 100, pages 143-176.

Bethke, C.M. and T.M. Johnson, 2002, Ground water age. Groundwater, volume 40, issue 4, pages 337-339.

Beyer, M., U. Morgenstern, P. van der Raaij, and H. Martindale, 2017, Halon-1301: further evidence of its performance as an age tracer in New Zealand groundwater. Hydrology and Earth Systems Sciences, volume 21, pages 4213-4231.

Böhlke, J.K. and J.M. Denver, 1995, Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resources Research, volume 31, number 9, pages 2319-2339.

Bollhöfer, A., C. Schlosser, S. Schmid, M. Konrad, R. Purtschert, and R. Krais, 2019, Half a century of Krypton-85 activity concentration measured in air over Central Europe: Trends and relevance for dating young groundwater. Journal of Environmental Radioactivity, volumes 205-206, pages 7-16.

Busenberg, E. and L.N. Plummer, 2008, Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF3Cl (CFC-13), and CF2Cl2 (CFC-12). Water Resources Research, volume 44, W02431, doi:10.1029/2007WR006150.

Calf, G.E., P.S. McDonald, and G. Jacobsen, 1991, Recharge mechanism and groundwater age in the Ti-Tree Basin, Northern Territory. Australian Journal of Earth Sciences, volume 38, pages 299-306.

Campbell, K., A. Wolfsberg, J. Fabryka-Martin, and D. Sweetkind, 2003, Chlorine-36 data at Yucca Mountain: statistical tests of conceptual models for unsaturated-zone flow. Journal of Contaminant Hydrology, volume 62-63, pages 43-61.

Castro, M.C. and P. Goblet, 2005, Calculation of ground water ages – A comparative analysis. Groundwater, volume 43, issue 3, pages 368-380.

Chambers, L.A., D.C. Gooddy, and A.M. Binley, 2019, Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: A review. Geoscience Frontiers, volume 10, pages 1643-1652.

Choung, S., and R.M. Allen-King, 2010, Can chlorofluorocarbon sorption to black carbon (char) affect groundwater age determinations? Environmental Science and Technology, volume 44, number 12, pages 4459-4464.

Clark, I., 2015, Groundwater Geochemistry and Isotopes. Chemical Rubber Company (CRC) Press, Taylor and Francis Group, 437 pages.

Clark, I., and P. Fritz, 1997, Environmental Isotopes in Hydrogeology. Lewis, Boca Raton, 328 pages.

Cook, P.G., and J.K. Böhlke, 2000, Determining timescales for groundwater flow and solute transport. In P.G. Cook and A.L. Herczeg, editors, Environmental Tracers in Subsurface Hydrology. Kluwer, Boston, pages 1-30.

Cook, P.G., G. Favreau, J.C. Dighton, and S. Tickell, 2003, Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology, volume 277, pages 74-88.

Cook, P.G., D.K. Solomon, L.N. Plummer, E. Busenberg, and S.L. Schiff, 1995, Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resources Research, volume 31, pages 425-434.

Cook, P.G., A. Love, and J. Dowie, 1996, Recharge estimation of shallow groundwaters using CFC age dating. MESA Journal, volume 3, pages 32-33.

Cook, P.G., and D.K. Solomon, 1997, Recent advances in dating young groundwater: 3H/3He, chlorofluorocarbons and 85Kr. Journal of Hydrology, volume 191, pages 245-265.

Cook, P.G., and A.L. Herczeg, 2000, Environmental Tracers in Subsurface Hydrology. Kluwer Academic Press, Boston, 529 pages.

Cook, P.G., 2020, Original figures and tables created for publications in 2020, [email protected].

Coplen, T.B., A.L. Herczeg, and C. Barnes, 2000, Isotope Engineering – Using stable isotopes of the water molecule to solve practical problems. In, P.G. Cook and A.L. Herczeg, editors, Environmental Tracers in Subsurface Hydrology. Kluwer, Boston, pages 79-110.

Dunkle, S.A., L.N. Plummer, J.M. Denver, P.A. Hamilton, R.L. Michel, and T.B. Coplen, 1993, Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resources Research, volume 29, number 12, pages 3837–3860.

Eckhardt, Gregg, 2020, The Edwards Aquifer Website, https://www.edwardsaquifer.net/images/carrizo_map.jpg.

Ekwurzel, B., P. Schlosser, W.M. Smethie Jr, L.N. Plummer, E. Busenberg, R.L. Michel, R. Weppernig, and M. Stute, 1994, Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resources Research, volume 30, number 6, pages 1693-1708.

Ellins, K.K., A. Roman-Mas, and, R.Lee, 1990, Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande De Manati, Puerto Rico. Journal of Hydrology, volume 115 pages 319–341.

Engesgaard, P., A.L. Hojberg, K. Hinsby, K.H. Jensen, T. Laier, F. Larsen, E. Busenberg, and L.N. Plummer, 2004, Transport and time lag of chlorofluorocarbon gases in the unsaturated zone, Rabis Creek, Denmark. Vadose Zone Journal, volume 3, number 4, pages 1249-1261.

Fabryka-Martin, J.T., A.V. Wolfsberg, P.R. Dixon, S.S. Levy, J.A. Musgrave, and H.J. Turin, 1997, Summary report of chlorine-36 studies: Sampling, analysis, and simulations of chlorine-36 in the Exploratory Studies Facility. Report LA-13352-MS, Los Alamos National Laboratory, Los Alamos, USA.

Fritz, P., and J. C. Fontes, 1980, Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam.

Fulton, S.A., 2012, Technical Report: Great Artesian Basin Resource Assessment. Department of Land Resource Management, Darwin, Australia.

Gardner, W.P., G.A. Harrington, D.K. Solomon, and, P.G. Cook, 2011, Using terrigenic 4He to identify and quantify regional groundwater discharge to streams. Water Resources Research, volume 47, doi:10.1029/2010WR010276.

Graven, Heather, Colin E. Allison, David M. Etheridge, Samuel Hammer, Ralph F. Keeling, Ingeborg Levin, Harro A. J. Meijer, Mauro Rubino, Pieter P. Tans, Cathy M. Trudinger, Bruce H. Vaughn, and James W. C. White, 2017, Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific Model Development, volume 10, pages 4405-4417.

Hall, C.M., M. Clara Castro, K.C. Lohmann, and, T. Sun, 2012, Testing the noble gas paleothermometer with a yearlong study of groundwater noble gases in an instrumenting monitoring well. Water Resources Research, volume 48, W04517, doi:10.1029/2011WR010951.

Heaton, T.H.E. and J.C. Vogel, 1981, ‘Excess air’ in groundwater. Journal of Hydrology, volume 50, pages 201-216.

Hendry, M.J., C.J. Kelln, L.I. Wassenaar, and, J. Shaw, 2004, Characterizing the hydrogeology of a complex clay-rich aquitard system using detailed vertical profiles of the stable isotopes of water. Journal of Hydrology, volume 293, pages 47-56.

Hinsby, K., A.L. Højberg, P. Engesgaard, K.H. Jensen, F. Larsen, L.N. Plummer, and, E. Busenberg, 2007, Transport and degradation of chlorofluorocarbons (CFCs) in the pyritic Rabis Creek aquifer, Denmark. Water Resources Research, volume 43, W10423, doi:10.1029/2006WR005854.

Ho, D.T., P. Schlosser, W.M. Smethie, and H.J. Simpson, 1988, Variability in atmospheric chlorofluorocarbons (CCl3F and CCl2F2) near a large urban area: implications for groundwater dating. Environmental Science and Technology, volume 32, number 16, pages 2377-2382.

International Atomic Energy Association (IAEA) and World Meteorological Organization (WMO), 2018, Global Network of Isotopes in Precipitation. The Global Network of Isotopes in Precipitation (GNIP) Database. https://nucleus.iaea.org/wiser.

Ingraham, N.L., 1998 Isotopic variations in precipitation, Chapter 3, in, C. Kendall and J.J. McDonnell, editors, Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, pages 87-118.

James, E.R., M. Manga, T.P. Rose, and, G.B. Hudson, 2000, The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow. Journal of Hydrology, volume 237, pages 100-112.

Kendall, C. and E.A. Caldwell, 1998, Fundamentals of Isotope Geochemistry, Chapter 2, in, C. Kendall and J.J. McDonnell, editors, Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, pages 51-86.

Ko, M.K.W. et al., 1993, Atmospheric sulfur hexafluoride: Sources, sinks and greenhouse warming. Journal of Geophysical Research, volume 98, number D6, pages 10499-10507.

Love, A.J., A.L. Herczeg, D. Armstrong, F. Stadter, and, E. Mazor, 1993, Groundwater flow regime within the Gambier Embayment of the Otway Basin, Australia: evidence from hydraulics and hydrochemistry. Journal of Hydrology, volume 143, pages 297-338.

Maiss, M. and C.A.M. Brenninkmeijer, 1998, Atmospheric SF6: Trends, sources and prospects. Environmental Science and Technology, 32, 3077-3086.

Marshall, B.D., R.J. Moscati, and G.L. Patterson, 2012, Fluid geochemistry of Yucca Mountain and vicinity, in, J.S. Stuckless, editor, Hydrology and Geochemistry of Yucca Mountain and Vicinity, Southern Nevada and California. Geological Society of America Memoir 209, pages 143-218.

Massmann, G., and J. Sültenfuss, 2008, Identification of processes affecting excess air formation during natural bank filtration and managed aquifer recharge. Journal of Hydrology, volume 359, pages 235-246.

Mazor, E., 2004, Chemical and Isotopic Groundwater Hydrology. Dekker, New York, 453 pages.

Mazor, E., and A. Bosch, 1992, Helium as a semi-quantitative tool for groundwater dating in the range of 104–108 years, in, Isotopes of Noble Gases as Tracers in Environmental Studies, International Atomic Energy Association (IAEA), Vienna, pages 163-178.

Mazurek, M. et al., 2011, Natural tracer profiles across argillaceous formations. Applied Geochemistry, volume 26, number 7, pages 1035-1064.

McCallum, J.L., P.G. Cook, C.T. Simmons, and A.D. Werner, 2014, Bias of apparent tracer ages in heterogeneous environments. Groundwater, volume 52, number 2, pages 239-250.

Meredith, K.T., S.E. Hollins, C.E. Hughes, D.I. Cendon, S. Hankin, and, D.J.M. Stone, 2009, Temporal variation in stable isotopes (O-18 and H-2) and major ion concentrations within the Darling River between Bourke and Wilcannia due to variable flows, saline groundwater influx and evaporation. Journal of Hydrology, volume 378, number 3-4, pages 313-324.

Muir, K.S., and T.B. Coplen, 1981, Tracing ground-water movement by using the stable isotopes of oxygen and hydrogen, Upper Penitencia Creek Alluvial Fan, Santa Clara Valley, California. United States Geological Survey Water-Supply Paper 2075.

Murphy, E.M., T.R. Ginn, and, J.L. Phillips, 1996, Geochemical estimates of paleorecharge in the Pasco Basin: Evaluation of the chloride mass balance technique. Water Resources Research, volume 32, number 9, pages 2853-2868.

Pearson, F.J. Jr., and D.E. White, 1967, Carbon 14 ages and flow rates of water in Carrizo Sand, Atascosa County, Texas. Water Resources Research, volume 3, number 1, pages 251-261.

Peters, E., A.Visser, B.K. Esser, and, J.E. Moran, 2018, Tracers reveal recharge elevations, groundwater flow paths and travel times on Mount Shasta, California. Water, volume 10, number 97, doi:10.3390/w10020097.

Philips, F.M., 2000, Chlorine-36. in, P.G. Cook and A.L. Herczeg, editors, Environmental Tracers in Subsurface Hydrology. Kluwer, Boston, pages 299-348.

Plummer, L.N., J.R. Eggleston, D.C. Andreasen, J.P. Raffensperger, A.G. Hunt, and G.C. Casile, 2012, Old groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: evidence from radiocarbon, chlorine-36 and helium-4. Hydrogeology Journal, volume 20, pages 1269-1294.

Reilly, T.E., L.N. Plummer, P.J. Phillips, E. Busenberg, 1994, The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resources Research, volume 30, number 2, pages 421-433.

Robertson, W.D., and J.A. Cherry, 1989, Tritium as an indicator of recharge and dispersion in a groundwater system in central Ontario. Water Resources Research, volume 25, number 6, pages 1097-1109.

Rosman, K.J.R., and P.D.P. Taylor, 1998, Isotopic compositions of the elements 1997. Pure Applied Chemistry, volume 70, number1, pages 217-235.

Ruland, W.W., J.A. Cherry, and S. Feenstra, 1991, The depth of fractures and active ground-water flow in a clayey till plain in southwestern Ontario. Groundwater, volume 29, number 3, pages 405-417.

Salmon, S.U., H. Prommer, J. Park, K.T. Meredith, J.V. Turner, and J.L. McCallum, 2015, A general reactive transport modelling framework for simulating and interpreting groundwater 14C age and δ 13C. Water Resources Research, doi:10.1002/2014WR015779.

Sanford, W.E., 1997, Correcting for diffusion in carbon-14 dating of ground water. Groundwater, volume 35, number 2, pages 357-361.

Sanford, W.E., 2011, Calibration of models using groundwater age. Hydrogeology Journal, volume 19, pages 13-16.

Schlosser, P., M. Stute, C. Sonntag, and K.O. Münnich, 1989, Tritiogenic 3He in shallow groundwater. Earth and Planetary Science Letters, volume 94, pages 245-256.

Solomon, D.K., R.J. Poreda, P.G. Cook, and A. Hunt, 1995, Site characterization using 3H/3He ground water ages, Cape Cod, MA. Groundwater, volume 33, pages 988-996.

Solomon, D.K., A. Hunt, and R.J. Poreda, 1996, Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resources Research, volume 32, number 6, pages 1805-1813.

Stute, M., K. Deak, K. Revesz, J.K. Böhlke, E. Deseo, R. Weppernig, and P. Schlosser, 1997, Tritium/3He dating of river infiltration: an example from the Danube in the Szigetkoz area, Hungary. Groundwater, volume 35, number 5, pages 905-911.

Stute, M. and P. Schlosser, 2000, Atmospheric noble gases. in, P.G. Cook and A.L. Herczeg, editors, Environmental Tracers in Subsurface Hydrology. Kluwer, Boston, pages 349-377.

Sudicky, E.A., and E.O. Frind, 1981, Carbon 14 dating of groundwater in confined aquifers: Implications of aquitard diffusion. Water Resources Research, volume 17, number 4, pages 1060-1064.

Trapp, Henry, Jr., and Marilee A. Horn, 1997, Ground Water Atlas of the United States: Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia. United States Geological Survey Hydrologic Atlas 730-L, https://pubs.usgs.gov/ha/ha730/ch_l/gif/L018.GIF.

United States Geological Survey (USGS), 2019, MODFLOW Software, www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs?qt-science_center_objects=0#qt-science_center_objects.

Verhagen, B.T., 1992, Detailed geohydrology with environmental isotopes. A case study at Serowe, Botswana. Isotope Techniques in Water Resources Development 1991, International Atomic Energy Association (IAEA), Vienna, pages 345-362.

Vogel, J.C., 1967, Investigation of groundwater flow with radiocarbon. Isotopes in Hydrology, International Atomic Energy Association (IAEA), Vienna, pages 355-369.

Walker, S.J., R.F. Weiss, and P.K. Salameh, 2000, Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-112, CFC-113, and carbon tetrachloride. Journal of Geophysical Research, volume 105, number C6, pages 14285-14296.

Weissmann, G.S., Y. Zhang, E.M. LaBolle, and G.E. Fogg, 2002, Dispersion of groundwater age in an alluvial aquifer system. Water Resources Research, volume 38, number 10, doi:10.1029/2001WR000907.

Wikimedia Commons, 2010, “Lake Eyre drainage basin including the major rivers” by Kmusser, own work using Digital Chart of the World, The Rand McNally New International Atlas (1993) and Department of the Environment, Water, Heritage and the Arts map used as references, is licensed under CC BY-SA 3.0)

Wikimedia Commons, 2010, “Location of geographical macroregion of hu:Alföld (red) within subdivisions of Hungary, own work based on Magyarország kistájainak katasztere” by Miaow Miaow is public domain.

Wikimedia Commons, 2019, Danube Map, https://commons.wikimedia.org/wiki/File:Danubemap.png.

Wolfsberg, A.V., J.T. Fabryka-Martin, and S.S. Levy, 1999, Use of chlorine-36 and other geochemical data to test a groundwater flow model for Yucca Mountain, Nevada. in, Use of Hydrogeochemical Information in Testing Groundwater Flow Models. Workshop held at Borgolm, Sweden, 1-3 September 1997. Organisation for Economic Co-operation and Development (OECD), Nuclear Energy Agency.

License